Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1161/01.cir.86.3.1061 | DOI Listing |
Sci Adv
January 2025
Department of Electrical and Computer Engineering, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA.
Electrical stimulation of existing three-dimensional bioprinted tissues to alter tissue activities is typically associated with wired delivery, invasive electrode placement, and potential cell damage, minimizing its efficacy in cardiac modulation. Here, we report an optoelectronically active scaffold based on printed gelatin methacryloyl embedded with micro-solar cells, seeded with cardiomyocytes to form light-stimulable tissues. This enables untethered, noninvasive, and damage-free optoelectronic stimulation-induced modulation of cardiac beating behaviors without needing wires or genetic modifications to the tissue solely with light.
View Article and Find Full Text PDFPLoS One
January 2025
Department of Surgical Pathology, Kyoto Prefectural University of Medicine, Kyoto, Japan.
Immunologic bile duct destruction is a pathogenic condition associated with vanishing bile duct syndrome (VBDS) after liver transplantation and hematopoietic stem-cell transplantation. As the bile acid receptor sphingosine 1-phosphate receptor 2 (S1PR2) plays a critical role in recruitment of bone marrow-derived monocytes/macrophages to sites of cholestatic liver injury, S1PR2 expression was examined using cultured macrophages and patient tissues. Bile canaliculi destruction precedes intrahepatic ductopenia; therefore, we focused on hepatocyte S1PR2 and the downstream RhoA/Rho kinase 1 (ROCK1) signaling pathway and bile canaliculi alterations using three-dimensional hepatocyte culture models that form obvious bile canaliculus-like networks.
View Article and Find Full Text PDFFEBS J
January 2025
INSERM UMR-1100, "Research Center for Respiratory Diseases (CEPR)", Tours, France.
Transplanted organs are inevitably exposed to ischemia-reperfusion (IR) injury, which is known to cause graft dysfunction. Functional and structural changes that follow IR tissue injury are mediated by neutrophils through the production of oxygen-derived free radicals, as well as from degranulation which entails the release of proteases and other pro-inflammatory mediators. Neutrophil serine proteases (NSPs) are believed to be the principal triggers of post-ischemic reperfusion damage.
View Article and Find Full Text PDFArtif Organs
January 2025
International Renal Research Institute of Vicenza (IRRIV), Vicenza, Veneto, Italy.
Background: Contrast-associated acute kidney injury (CA-AKI) is frequent in patients with chronic kidney disease who are submitted to cardiac endovascular procedures using iodinated contrast. In hemoadsorption, cartridges containing styrene-divinylbenzene sorbent resin are applied to remove substances from the blood through an extracorporeal circuit. Importantly, iodinated contrast is also removed via adsorption.
View Article and Find Full Text PDFMol Cell Biochem
January 2025
Department of Vascular Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, China.
N6-methyladenosine (mA) methylation is the most prevalent and abundant internal modification of mRNAs and is catalyzed by the methyltransferase complex. Methyltransferase-like 3 (METTL3), the best-known mA methyltransferase, has been confirmed to function as a multifunctional regulator in the reversible epitranscriptome modulation of mA modification according to follow-up studies. Accumulating evidence in recent years has shown that METTL3 can regulate a variety of functional genes, that aberrant expression of METTL3 is usually associated with many pathological conditions, and that its expression regulatory mechanism is related mainly to its methyltransferase activity or mRNA posttranslational modification.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!