We previously showed that pancreatic beta-cells express a neuronal isoform of nitric oxide synthase (nNOS) that controls insulin secretion by exerting two enzymatic activities: nitric oxide (NO) production and cytochrome c reductase activity. We now bring evidence that two inhibitors of nNOS, N-omega-nitro-l-arginine methyl ester (l-NAME) and 7-nitroindazole (7-NI), increase glucose-induced insulin secretion but affect beta-cell function differently. In the presence of l-NAME, insulin response is monophasic, whereas 7-NI preserves the normal biphasic secretory pattern. In addition, the alterations of beta-cell functional response induced by the inhibitors also differ by their sensitivity to a substitutive treatment with sodium nitroprusside, a chemical NO donor. These differences are probably related to the nature of the two inhibitors. Indeed, using low-temperature SDS-PAGE and real-time analysis of nNOS dimerization by surface plasmon resonance, we could show that 7-NI, which competes with arginine and tetrahydrobiopterin (BH(4)), an essential cofactor for nNOS dimer formation, inhibits dimerization of the enzyme, whereas the substrate-based inhibitor l-NAME stabilizes the homodimeric state of nNOS. The latter effect could be reproduced by the two endogenous inhibitors of NOS, N-omega-methyl-l-arginine and asymmetric dimethylarginine, and resulted interestingly in a reduced ability of the protein inhibitor of nNOS (PIN) to dissociate nNOS dimers. We conclude that intracellular factors able to induce abnormalities in the nNOS monomer/dimer equilibrium could lead to pancreatic beta-cell dysfunction.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.2337/diabetes.53.6.1467 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!