In preclinical tumor models, inhibition of nuclear factor-kappaB (NF-kappaB) has been associated with increased sensitivity to chemotherapeutic agents such as irinotecan (CPT-11). This is based on the fact that a variety of chemotherapy agents such as CPT-11 activate NF-kappaB to result in the expression of genes such as c-IAP1 and c-IAP2 that might be responsible for the inhibition of chemotherapy-induced apoptosis. In this study, RNA interference [small interfering RNA (siRNA)] was used to down-regulate the NF-kappaB p65 subunit in the HCT116 colon cancer cell line, and its role, in the presence and absence of CPT-11, was assessed on cell growth and apoptosis. Reduction of endogenous p65 by siRNA treatment significantly impaired CPT-11-mediated NF-kappaB activation, enhanced apoptosis, and reduced colony formation in soft agar. Furthermore, the in vivo administration of p65 siRNA reduced HCT116 tumor formation in xenograft models in the presence but not the absence of CPT-11 administration. These data indicate that the administration of siRNA directed against the p65 subunit of NF-kappaB can effectively enhance in vitro and in vivo sensitivity to chemotherapeutic agents.

Download full-text PDF

Source
http://dx.doi.org/10.1158/1078-0432.CCR-03-0366DOI Listing

Publication Analysis

Top Keywords

p65 subunit
12
nuclear factor-kappab
8
sensitivity chemotherapeutic
8
chemotherapeutic agents
8
presence absence
8
absence cpt-11
8
p65 sirna
8
p65
5
nf-kappab
5
enhanced chemosensitivity
4

Similar Publications

In most solid tumors, cellular energy metabolism is primarily dominated by aerobic glycolysis, which fulfills the high demand for biomacromolecules at the expense of reduced ATP production efficiency. Elucidation of the mechanisms by which rapidly proliferating malignant cells acquire sufficient energy in this state of inefficient ATP production from glycolysis could enable development of metabolism targeted therapeutic strategies. In this study, we observed a significant association between elevated expression levels of the long non-coding RNA (lncRNA) SNHG17 and unfavorable prognosis in breast cancer (BCa).

View Article and Find Full Text PDF

ABCA1-Super Enhancer RNA Promotes Cholesterol Efflux, Reduces Macrophage-Mediated Inflammation and Atherosclerosis.

JACC Basic Transl Sci

December 2024

Division of Cardiology, Departments of Internal Medicine Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China.

We describe a previously uncharacterized ATP-binding cassette A1 super enhancer RNA (ABCA1-seRNA)-mediated cholesterol efflux. In addition, it promoted macrophage inflammatory cytokine release, and was causally correlated with coronary artery disease severity. Mechanistically, ABCA1-seRNA upregulated cholesterol efflux by interacting with mediator complex subunit 23 and recruiting retinoid X receptor-alpha and liver X receptor-alpha to promote ABCA1 transcription in a manner.

View Article and Find Full Text PDF

The ethanolic extract of Rhaphidophora peepla prevents inflammation by inhibiting the activation of Syk/AKT/NF-κB and TAK1/MAPK/AP-1.

Phytomedicine

January 2025

Department of Integrative Biotechnology, and Biomedical Institute for Convergence at SKKU, Sungkyunkwan University, Suwon 16419, Republic of Korea; Department of Biocosmetics, Sungkyunkwan University, Suwon 16419, Republic of Korea. Electronic address:

Background: Inflammation is the body's innate reaction to foreign pathogens and serves as a self-regulating mechanism. However, the immune system can mistakenly target the body's own tissues, triggering unnecessary inflammation. For millennia, medicinal plants have been employed for the treatment of diseases.

View Article and Find Full Text PDF

The protein interactome of p65/RELA, the most active subunit of the transcription factor (TF) NF-κB, has not been previously determined in living cells. Using p65-miniTurbo fusion proteins and biotin tagging, we identify >350 RELA interactors from untreated and IL-1α-stimulated cells, including many TFs (47% of all interactors) and >50 epigenetic regulators belonging to different classes of chromatin remodeling complexes. A comparison with the interactomes of two point mutants of p65 reveals that the interactions primarily require intact dimerization rather than DNA-binding properties.

View Article and Find Full Text PDF

Background: Osteoporosis is a pervasive bone metabolic disorder characterized by the progressive degeneration of bone microstructure. Osteoclasts are playing a pivotal role in bone remodeling and resorption. Consequently, modulating osteoclast activity, particularly curbing their overactivation, has become a crucial strategy in clinical treatments.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!