Assignments of carbon NMR resonances for microcrystalline ubiquitin.

J Am Chem Soc

Department of Chemistry, Columbia University, 3000 Broadway MC 3113, New York, New York 10027, USA.

Published: June 2004

Solid-state NMR 2D spectroscopy was used to correlate carbon backbone and side-chain chemical shifts for uniformly (13)C,(15)N-enriched microcrystalline ubiquitin. High applied field strengths, 800 MHz for protons, moderate proton decoupling fields, 80-100 kHz, and high magic angle sample spinning frequencies, 20 kHz, were used to narrow the most of the carbon line widths to 0.5-0.8 ppm. Homonuclear magnetization transfer was effected by matching the proton RF field to the spinning frequency, the so-called dipolar-assisted rotational resonance (DARR) (Takegoshi, K.; Nakamura, S.; Terao, T. Chem. Phys. Lett. 2001, 344, 631-637), and a mixing time of 20 ms was used to maximize the intensity of one-bond transfers between carbon atoms. This polarization transfer sequence resulted in roughly 14% transfer efficiencies for directly bonded carbon pairs and 4% transfer efficiencies for carbons separated by a third carbon. With this simple procedure, the majority of the one-bond correlations was observed with moderate transfer efficiencies, and many two-bond correlations were also observed with weaker intensities. Spin systems could be identified for more than half of the amino acid side chains, and site-specific assignments were readily possible via comparison with 400 MHz (15)N-(13)C-(13)C correlation spectroscopy (described separately).

Download full-text PDF

Source
http://dx.doi.org/10.1021/ja030547oDOI Listing

Publication Analysis

Top Keywords

transfer efficiencies
12
microcrystalline ubiquitin
8
correlations observed
8
carbon
5
transfer
5
assignments carbon
4
carbon nmr
4
nmr resonances
4
resonances microcrystalline
4
ubiquitin solid-state
4

Similar Publications

Hydroxy radical (•OH) is a prestigious oxidant that allows the cleavage of strong chemical bonds of methane but is untamed, leading to over-oxidation of methane and waste of oxidants, especially at high methane conversion. Here, we managed to buffer •OH in an aqueous solution of photo-irradiated Fe3+, where •OH almost participates in methane oxidation. Due to the interaction between Fe3+ and SO42-, the electron transfer from OH- to excited-state Fe3+ for •OH generation is retarded, while excessive •OH is consumed by generated Fe2+ to restore Fe3+.

View Article and Find Full Text PDF

Self-powered photoelectrochemical sensor based on molecularly imprinted polymer-coupled CBFO photocathode and AgS/SnS photoanode for ultrasensitive dimethoate sensing.

Anal Chim Acta

February 2025

CAS Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, PR China. Electronic address:

Dimethoate (DIM) is one of the most extensively applied organophosphorus pesticides (OPs), which is used to boost farm productivity due to its high insecticidal efficacy. However, the excessive use of DIM can result in the extensive contamination of soil, groundwater and food. Monitoring of DIM in environmental and food samples is crucial in view of its potential health risks and environmental hazards from excessive residues.

View Article and Find Full Text PDF

A label-free electrochemical biosensor based on graphene quantum dots-nanoporous gold nanocomposite for highly sensitive detection of glioma cell.

Anal Chim Acta

February 2025

School of Life Sciences, The Second Affiliated Hospital, Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, 250117, PR China. Electronic address:

Background: Glioma accounts for 80 % of all malignant primary brain tumors with a high mortality rate. Histopathological examination is the current diagnostic methods for glioma, but its invasive surgical interventions can cause cerebral edema or impair neural functioning. Liquid biopsy proves to be an efficient method for glioma detection.

View Article and Find Full Text PDF

Post-synthesis surface modification of Cu/Zr metal azolate framework: A pathway to highly sensitive electrochemical biosensors for atrazine detection.

Anal Chim Acta

February 2025

Dept. of Electronic Materials Engineering, Kwangwoon University, Seoul, 01897, Republic of Korea. Electronic address:

Background: Atrazine (ATZ), a pesticide that poses serious health problems, is observed in the environment, thereby prompting its periodic monitoring and control using functional biosensors. However, established methods for ATZ detection have limited applicability. Two-dimensional (2D) metal azolate frameworks (MAF) have a higher surface area per unit volume and provide easier access to active sites.

View Article and Find Full Text PDF

Intranasal delivery of extracellular vesicles: A promising new approach for treating neurological and respiratory disorders.

J Control Release

January 2025

Drug Delivery Laboratory, Departamento de Ciencias y Tecnología Farmacéuticas, Universidad de Chile, Santiago, Chile; Advanced Center for Chronic Diseases (ACCDiS), Santiago, Chile; Center of New Drugs for Hypertension and Heart Failure (CENDHY), Santiago, Chile. Electronic address:

Background: Extracellular vesicles (EVs) are membrane vesicles secreted by all types of cells, including bacteria, animals, and plants. These vesicles contain proteins, nucleic acids, and lipids from their parent cells and can transfer these components between cells. EVs have attracted attention for their potential use in diagnosis and therapy due to their natural properties, such as low immunogenicity, high biocompatibility, and ability to cross the blood-brain barrier.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!