In vitro catalytic activity of DesVII, the glycosyltransferase involved in the biosynthesis of methymycin, neomethymycin, narbomycin, and pikromycin in Streptomyces venezuelae, is described. This is the first report of demonstrated in vitro activity of a glycosyltransferase involved in the biosynthesis of macrolide antibiotics. DesVII is unique among glycosyltransferases in that it requires an additional protein component, DesVIII, as well as basic pH for its full activity.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/ja049967j | DOI Listing |
Appl Microbiol Biotechnol
March 2016
Institute of Health Sciences, School of Life Sciences, Anhui University, Hefei, 230601, China.
Glycosyltransferase DesVII and its auxiliary partner DesVIII from Streptomyces venezulae, homologs of EryCIII and EryCII in Saccharopolyspora erythraea, have previously been demonstrated to be flexible on their substrates in vitro. Herein, we investigated their in vivo function by interspecies complementation in the mutant strains of Sac. erythraea A226.
View Article and Find Full Text PDFJ Biotechnol
October 2013
Department of Chemistry and Nano Sciences, Ewha Womans University, Seoul 120-750, Republic of Korea; Institute of Nano-Biotechnology, Ewha Womans University, Seoul 120-750, Republic of Korea.
Expression plasmids carrying different deoxysugar biosynthetic gene cassettes and the gene encoding a substrate-flexible glycosyltransferase DesVII were constructed and introduced into Streptomyces venezuelae YJ003 mutant strain bearing a deletion of a desosamine biosynthetic (des) gene cluster. The resulting recombinants produced macrolide antibiotic YC-17 analogs possessing unnatural sugars replacing native D-desosamine. These metabolites were isolated and further purified using chromatographic techniques and their structures were determined as D-quinovosyl-10-deoxymethynolide, L-rhamnosyl-10-deoxymethynolide, L-olivosyl-10-deoxymethynolide, and D-boivinosyl-10-deoxymethynolide on the basis of 1D and 2D NMR and MS analyses and the stereochemistry of sugars was confirmed using coupling constant values and NOE correlations.
View Article and Find Full Text PDFAppl Microbiol Biotechnol
February 2012
Interdisciplinary Programs of Bioengineering, Seoul National University, Seoul 151-742, Republic of Korea.
A 14-membered macrolide antibiotic narbomycin produced from Streptomyces venezuelae ATCC 15439 is composed of polyketide macrolactone ring and D-desosamine as a deoxysugar moiety, which acts as an important determinant of its antibacterial activity. In order to generate diverse glycosylated derivatives of narbomycin, expression plasmids carrying different deoxysugar biosynthetic gene cassettes and the gene encoding a substrate-flexible glycosyltransferase DesVII were constructed and introduced into S. venezuelae YJ003 mutant strain bearing a deletion of thymidine-5'-diphospho-D-desosamine biosynthetic gene cluster.
View Article and Find Full Text PDFBiochemistry
September 2010
Division of Medicinal Chemistry, College of Pharmacy, and Department of Chemistry and Biochemistry, University of Texas, Austin, Texas 78712, USA.
The in vitro characterization of the catalytic activity of DesVII, the glycosyltransferase involved in the biosynthesis of the macrolide antibiotics methymycin, neomethymycin, narbomycin, and pikromycin in Streptomyces venezuelae, is described. DesVII is unique among glycosyltransferases in that it requires an additional protein component, DesVIII, for activity. Characterization of the metabolites produced by a S.
View Article and Find Full Text PDFJ Am Chem Soc
May 2006
Division of Medicinal Chemistry, College of Pharmacy, and Department of Chemistry and Biochemistry, University of Texas, Austin, Texas 78712, USA.
The two essential structural components of macrolide antibiotics are the polyketide aglycone and the appended sugars. The aglycone formation is catalyzed by polyketide synthase (PKS), and glycosylation is catalyzed by an appropriate glycosyltransferase. Although it has been shown that glycosylation occurs after the cyclic aglycone is released from PKS, it is not known whether the acyl carrier protein (ACP)-bound linear polyketide chain can also be processed by the corresponding glycosyltransferase.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!