A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Phytotoxins from the leaves of Ruta graveolens. | LitMetric

Phytotoxins from the leaves of Ruta graveolens.

J Agric Food Chem

Department of Pharmacognosy, University of Mississippi, University, Mississippi 38677, USA.

Published: June 2004

Bioassay-guided fractionation of the ethyl acetate extract of Ruta graveolens (common rue) leaves led to the isolation of the furanocoumarins 5-methoxypsoralen (5-MOP), 8-methoxypsoralen (8-MOP), and the quinolone alkaloid graveoline as phytotoxic constituents. Graveoline and 8-MOP substantially inhibited growth of Lactuca sativa (lettuce) seedlings and reduced chlorophyll content at 100 microM; this effect was not due to a direct effect on chlorophyll synthesis. Radical growth of L. sativa was inhibited by 10 microM 8-MOP. Graveoline inhibited growth of Lemna paucicostata (duckweed) at 100 microM. This is the first report of the phytotoxic activity of graveoline. Growth of Agrostis stolonifera (bentgrass) was inhibited by 5-MOP at 30 microM. All three compounds substantially reduced cell division in Allium cepa (onion) at or below 100 microM. None of the compounds caused significant cellular leakage of Cucumis sativus (cucumber) cotyledon disks at 100 microM. All three compounds inhibit plant growth, at least partially through inhibition of cell division.

Download full-text PDF

Source
http://dx.doi.org/10.1021/jf0497298DOI Listing

Publication Analysis

Top Keywords

100 microm
16
ruta graveolens
8
inhibited growth
8
microm three
8
three compounds
8
cell division
8
microm
6
growth
5
phytotoxins leaves
4
leaves ruta
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!