Effect of cycloartanes on reversal of multidrug resistance and apoptosis induction on mouse lymphoma cells.

Anticancer Res

Centro de Estudos de Ciências Farmacêuticas, Faculdade de Farmácia da Universidade de Lisboa, Av. das Forças Armadas, 1600-083 Lisboa, Portugal.

Published: July 2004

The ability of fifteen cycloartanes, isolated from Euphorbia species, to reverse multidrug resistance (MDR) and apoptosis induction in L5178Y mouse lymphoma cells, including its multidrug-resistant subline, was studied by flow cytometry. Reversion of MDR was investigated using a standard functional assay with rhodamine 123 as a fluorescent substrate analogue. For the evaluation of apoptosis, the cells were stained with FITC-labeled annexin V and propidium iodide. The majority of the compounds were able to reverse MDR of the tested human MDR1 gene-transfected mouse lymphoma cells. Some of the compounds were able to induce moderate apoptosis in the PAR cell line, but this effect was less effective on multidrug-resistant cells. The results indicate that cycloartanes can be substrates of ABC transporters, which might compete with certain anticancer chemotherapeutics.

Download full-text PDF

Source

Publication Analysis

Top Keywords

mouse lymphoma
12
lymphoma cells
12
multidrug resistance
8
apoptosis induction
8
cells
5
cycloartanes reversal
4
reversal multidrug
4
apoptosis
4
resistance apoptosis
4
induction mouse
4

Similar Publications

Excess Ub-K48 Induces Neuronal Apoptosis in Alzheimer's Disease.

J Integr Neurosci

December 2024

Department of Human Anatomy, School of Basic Medical Sciences, Wannan Medical College, 241002 Wuhu, Anhui, China.

Background: K48-linked ubiquitin chain (Ub-K48) is a crucial ubiquitin chain implicated in protein degradation within the ubiquitin-proteasome system. However, the precise function and molecular mechanism underlying the role of Ub-K48 in the pathogenesis of Alzheimer's disease (AD) and neuronal cell abnormalities remain unclear. The objective of this study was to examine the function of K48 ubiquitination in the etiology of AD, and its associated mechanism of neuronal apoptosis.

View Article and Find Full Text PDF

Background: The prognostic significance of the chemokine receptor CCR7 in diffuse large B-cell lymphoma (DLBCL) has been reported previously. However, the detailed mechanisms of CCR7 in DLBCL, particularly regarding its interaction with lenalidomide treatment, are not fully understood.

Methods: Our study utilized bioinformatics approaches to identify hub genes in SU-DHL-2 cell lines treated with lenalidomide compared to control groups.

View Article and Find Full Text PDF

Background: As a novel blocker of vascular endothelial growth factor receptor (VEGFR), fruquintinib has been approved for treating colorectal cancer (CRC). However, its dosage and therapeutic efficacy are limited by its widespread adverse reactions. Venetoclax, recognized as the initial inhibitor of B-cell lymphoma protein 2 (BCL2), has shown potential in boosting the effectiveness of immunotherapy against CRC.

View Article and Find Full Text PDF

Splenic fibroblasts control marginal zone B cell movement and function via two distinct Notch2-dependent regulatory programs.

Immunity

December 2024

Division of Hematology/Oncology, Department of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Immunology Graduate Group, University of Pennsylvania, Philadelphia, PA, USA; Division of Hematologic Malignancies, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA. Electronic address:

Innate-like splenic marginal zone (MZ) B (MZB) cells play unique roles in immunity due to their rapid responsiveness to blood-borne microbes. How MZB cells integrate cell-extrinsic and -intrinsic processes to achieve accelerated responsiveness is unclear. We found that Delta-like1 (Dll1) Notch ligands in splenic fibroblasts regulated MZB cell pool size, migration, and function.

View Article and Find Full Text PDF

Hyperreactive B cells instruct their elimination by T cells to curb autoinflammation and lymphomagenesis.

Immunity

December 2024

Institute of Experimental Hematology, School of Medicine, Technical University of Munich, 81675 Munich, Germany; Center for Translational Cancer Research (TranslaTUM), School of Medicine, Technical University of Munich, 81675 Munich, Germany; German Cancer Consortium (DKTK), 69120 Heidelberg, Germany; Max-Planck Institute of Biochemistry, 82152 Planegg, Germany. Electronic address:

B cell immunity carries the inherent risk of deviating into autoimmunity and malignancy, which are both strongly associated with genetic variants or alterations that increase immune signaling. Here, we investigated the interplay of autoimmunity and lymphoma risk factors centered around the archetypal negative immune regulator TNFAIP3/A20 in mice. Counterintuitively, B cells with moderately elevated sensitivity to stimulation caused fatal autoimmune pathology, while those with high sensitivity did not.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!