Multiple sclerosis is a chronic inflammatory disease of the central nervous system. Myelin and oligodendrocytes are considered the major targets of injury caused by a cell-mediated immune response. There is circumstantial evidence that proinflammatory cytokines like tumor necrosis factor alpha (TNF-alpha) and interferon gamma (IFN-gamma) could have disease-promoting roles in multiple sclerosis (MS). In the present study, the cytotoxic effects of IFN-gamma and TNF-alpha on the human oligodendroglial cell lines human oligodendroglioma (HOG) and MO3.13 were analyzed. When the oligodendroglial cell lines were cultured in the presence of IFN-gamma or TNF-alpha, apoptotic cell death was observed in both cell lines after >24 hr incubation. Apoptosis was evidenced by a decrease in cell viability, apoptotic changes in cell and nucleus morphology, and disruption of the membrane asymmetry. Our data show that TNF-alpha and IFN-gamma induce apoptosis in a dose-dependent fashion in both oligodendroglial cell lines and that their synergistic effect results in enhanced cell death. Understanding the regulation of cell death pathways in oligodendrocytes is critical for protecting myelin-producing cells and their associated axons during injury in patients with MS.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/jnr.20118 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!