Nematode diversity and dynamics of a full-scale rotating biological contactor plant (RBC) has been studied. Analysis of biofilm composition showed a well-established zoning of microfauna among the three RBC sections analysed. Nematodes appeared to be the dominant group within the larger microfauna populations with average abundances between 200 and 300ind/mg or 8000 and 17000ind/cm(2). The most abundant nematode species were Diplogasteritus nudicapitatus and Paroigolaimella coprophages and, to a lesser extent, Paroigolaimella bernensis and Steinernema intermedia. The relationship between nematodes and filamentous bacteria (specifically the genus Beggiatoa) was the most significant biotic relationship found, and to a lesser extent, nematodes with ciliates. The relationship between the abundance of nematode species and the physical-chemical variables suggests that nematodes may be good indicators of low pollutant load levels in the entry of the RBC system. Finally, the results indicate that nematodes may have a relevant role for a good biofilm development.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.watres.2004.03.007DOI Listing

Publication Analysis

Top Keywords

rotating biological
8
nematode species
8
lesser extent
8
nematodes
5
dynamics nematodes
4
nematodes high
4
high organic
4
organic loading
4
loading rotating
4
biological contactors
4

Similar Publications

Arbuscular mycorrhizal Fungi (AMF) are essential in agriculture and are often inter-linked with glomalin-related soil protein (GRSP) production which supports binding of aggregates, enhanced SOC and biological attributes. However, conservation agricultural practices in agroecosystem may have significant impact on AMF diversity, GRSP and soil quality-related parameters (SQRPs). This current experiment was implemented to gauge AMF conization percentage (AMF-CP), GSRP and significant changes on critical SQRPs, and to investigate the linkages between AMF-CP, GRSP and SQRPs as influenced by synergistic tillage and weed management in CA.

View Article and Find Full Text PDF

The red pigment was recovered from the S. phaeolivaceus GH27 isolate, which was molecularly identified using 16S rRNA gene sequencing and submitted to GenBank as OQ145635.1.

View Article and Find Full Text PDF

Background And Purpose:  Early migration of the uncemented cruciate-sacrificing rotating platform ATTUNE and Low Contact Stress (LCS) tibial components was classified as at-risk for aseptic loosening rates exceeding 6.5% at 15 years based on recent fixation-specific migration thresholds. In this secondary report of a randomized controlled trial (RCT) we aimed to evaluate whether the 5-year migration, inducible displacement, and the clinical outcome of the ATTUNE components were comparable to those of the LCS.

View Article and Find Full Text PDF

Toward Grid-Based Models for Molecular Association.

J Chem Theory Comput

January 2025

Department of Biology, Chemistry and Pharmacy, Freie Universität Berlin, Arnimallee 22, 14195 Berlin, Germany.

This paper presents a grid-based approach to model molecular association processes as an alternative to sampling-based Markov models. Our method discretizes the six-dimensional space of relative translation and orientation into grid cells. By discretizing the Fokker-Planck operator governing the system dynamics via the square-root approximation, we derive analytical expressions for the transition rate constants between grid cells.

View Article and Find Full Text PDF

Robotic Microcapsule Assemblies with Adaptive Mobility for Targeted Treatment of Rugged Biological Microenvironments.

ACS Nano

January 2025

Center for Innovation & Precision Dentistry, School of Dental Medicine, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States.

Microrobots are poised to transform biomedicine by enabling precise, noninvasive procedures. However, current magnetic microrobots, composed of solid monolithic particles, present fundamental challenges in engineering intersubunit interactions, limiting their collective effectiveness in navigating irregular biological terrains and confined spaces. To address this, we design hierarchically assembled microrobots with multiaxis mobility and collective adaptability by engineering the potential magnetic interaction energy between subunits to create stable, self-reconfigurable structures capable of carrying and protecting cargo internally.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!