H3 mRNA level as a new proliferative marker in astrocytomas.

Biochim Biophys Acta

Department of Molecular Biology, Medical University of Silesia, Narcyzow 1, 41-206, Sosnowiec, Poland.

Published: May 2004

Replication-dependent H3.1 and H3.2 histones are encoded by 11 genes. The H3 mRNA levels in brain astrocytomas using real-time RT-PCR assay was examined. The sequence of primers and probe used in amplification was designed basing on the reference sequence GenBank accession no. The H3 mRNA levels correlated with tumor grade (R=0.56, P=0.0012), Ki-67 proliferative antigen labeling index (R=0.58, P=0.0008) and patient survival time (R=-0.50, P=0.005), discriminating low-grade and high-grade tumors. Quantification of H3 mRNA with real-time RT-PCR using the proposed pair of primers may supplement classic proliferative tests and predictive factors in brain astrocytomas.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bbadis.2004.01.006DOI Listing

Publication Analysis

Top Keywords

mrna levels
8
brain astrocytomas
8
real-time rt-pcr
8
mrna
4
mrna level
4
level proliferative
4
proliferative marker
4
marker astrocytomas
4
astrocytomas replication-dependent
4
replication-dependent h31
4

Similar Publications

Triple-negative breast cancer (TNBC) remains a significant global health challenge, emphasizing the need for precise identification of patients with specific therapeutic targets and those at high risk of metastasis. This study aimed to identify novel therapeutic targets for personalized treatment of TNBC patients by elucidating their roles in cell cycle regulation. Using weighted gene co-expression network analysis (WGCNA), we identified 83 hub genes by integrating gene expression profiles with clinical pathological grades.

View Article and Find Full Text PDF

Abnormality of granulosa cells (GCs) is the critical cause of follicular atresia in premature ovarian failure (POF). RIPK3 is highly expressed in GCs derived from atretic follicles. We focus on uncovering how RIPK3 contributes to ovarian GC senescence.

View Article and Find Full Text PDF

Introduction: Effects of Dapagliflozin (Dapa) and Dapagliflozin-Saxagliptin combination (Combo) was examined on peripheral blood derived CD34 + Hematopoetic Stem Cells (HSCs) as a cellular CVD biomarker. Both Dapa (a sodium-glucose co-transporter 2 or SGLT2, receptor inhibitor) and Saxagliptin (a Di-peptydl-peptidase-4 or DPP4 enzyme inhibitor) are commonly used type 2 diabetes mellitus or T2DM medications, however the benefit of using the combination has not been evaluated for cardio-renal risk assessment, in a real-life practice setting, compared to a placebo.

Hypothesis: We hypothesized that Dapa will improve the outcomes when compared to placebo and the Combo maybe even more beneficial.

View Article and Find Full Text PDF

Unbalanced redox homeostasis leads to the production of reactive oxygen species and exacerbates inflammatory bowel disease. To investigate the role of the transcription factor Nrf2, a major antioxidative stress sensor, in intestinal epithelial cells (IECs), we generated IEC-specific Nrf2 gene knock-in mice (Nrf2-vRes), which express Nrf2 only in IECs, using the cre/loxp system. Colitis was induced in wild-type (WT) mice, whole-body Nrf2-knockout (Nrf2-KO) mice, and Nrf2-vRes mice by administering dextran sulfate sodium (DSS) for 1 week (acute model) or intermittently for 5 weeks (chronic model).

View Article and Find Full Text PDF

Circadian influences on sudden cardiac death and cardiac electrophysiology.

J Mol Cell Cardiol

January 2025

Department of Physiology, University of Kentucky, Lexington, KY, USA; Department of Internal Medicine, University of Kentucky, Lexington, KY, USA. Electronic address:

Cardiologists have analyzed daily patterns in the incidence of sudden cardiac death to identify environmental, behavioral, and physiological factors that trigger fatal arrhythmias. Recent studies have indicated an overall increase in sudden cardiac arrest during daytime hours when the frequency of arrhythmogenic triggers is highest. The risk of fatal arrhythmias arises from the interaction between these triggers-such as elevated sympathetic signaling, catecholamine levels, heart rate, afterload, and platelet aggregation-and the heart's susceptibility (myocardial substrate) to them.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!