Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
We investigate the ability of S-adenosylmethionine (SAMe) to antagonize the cyclosporine A (CyA)-induced inhibition of biliary glutathione efflux induced by long-term administration of CyA (10 mg/kg per day-CyA(10) or 20 mg/kg per day-CyA(20) for 4 weeks) in rats. CyA treatment reduced the liver content of total glutathione and caused a significant increase in the oxidized-to-reduced glutathione ratio and the thiobarbituric acid-reactive substances (TBARS) concentration. When the rats were concurrently treated with SAMe (10 mg/kg twice daily) and CyA, all these parameters did not significantly differ from control values. Treatment with CyA induced a significant increase in liver GGT activity that was attenuated by coadministration of SAMe. Biliary efflux of total glutathione was significantly reduced in animals treated with CyA. These changes were abolished by SAMe administration. Following inhibition of the intrabiliary catabolism of the tripeptide by acivicin, glutathione efflux rates increased to a lesser extent in animals cotreated with SAMe when compared to those receiving only CyA. The significant decrease in biliary efflux of oxidized glutathione induced by CyA was totally (S + CyA(10)) or partially (S + CyA(20)) prevented by coadministration of SAMe. Our observations confirm that SAMe cotreatment in rats antagonizes CyA-induced inhibition in the biliary efflux of glutathione and suggest that protection against intrabiliary glutathione degradation plays a major role in this protective effect.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.tox.2004.02.030 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!