Tat protein from human immunodeficiency virus can deliver biologically active proteins in vivo and is of considerable interest for protein therapeutics. The mechanism responsible for Tat-fusion protein internalization is still poorly understood and controversial. The punctuate distribution, timing, and temperature sensitivity observed in our experiments with Tat-fusion proteins are consistent with endocytosis. After a few hours, Tat-fusion proteins accumulated around the nucleus without any significant visible nuclear targeting. Using a Cre/Lox based functional assay, lysosomotropic agents known to disrupt endosome integrity, increased by up to 23-fold the nuclear delivery of functional Tat-Cre recombinase without increasing cell uptake in a similar fashion. This shows that endosome disruption can significantly increase Tat-fusion protein access to the cytosol and nucleus. In addition, we found that internalized Tat-fusion proteins persisted several hours and that inhibitors of lysosome acidification did not increase functional nuclear delivery of Tat-Cre. This suggests that Tat-fusion proteins enter via the endosomal pathway, circumvent lysosomal degradation, and are then sequestered in the periphery of the nucleus. Most importantly, our work indicates that an inadequate intracellular trafficking is the main factor limiting the efficiency of protein cargo delivery using Tat.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.bbrc.2004.04.180 | DOI Listing |
Sci Rep
October 2024
Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran.
Protein Sci
October 2024
Institute of Medical Genetics, Center for Pathobiochemistry and Genetics, Medical University of Vienna, Vienna, Austria.
The intrinsically disordered protein MeCP2 is a global transcriptional regulator encoded by the MECP2 gene. Although the structured domains of MeCP2 have been the subject of multiple studies, its unstructured regions have not been that extensively characterized. In this work, we show that MeCP2 possesses properties akin to those of supercharged proteins.
View Article and Find Full Text PDFInt J Biol Macromol
June 2024
Department of Hepatitis and AIDS, Pasteur Institute of Iran, Tehran, Iran.
Curr HIV Res
August 2024
Department of Hepatitis and AIDS, Pasteur Institute of Iran, Tehran, Iran.
Background: Heterologous combinations in vaccine design are an effective approach to promote T cell activity and antiviral effects. The goal of this study was to compare the homologous and heterologous regimens targeting the Nef-Tat fusion antigen to develop a human immunodeficiency virus-1 (HIV-1) therapeutic vaccine candidate.
Methods: At first, the DNA and protein constructs harboring HIV-1 Nef and the first exon of Tat as linked form (pcDNA- and Nef-Tat protein) were prepared in large scale and high purity.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!