H2 generation during mechanochemical treatment of kaolinite by dry grinding was examined by X-ray diffraction analysis, Fourier transform infrared spectroscopy, and BET surface area measurement. The H2 concentration in the mill pot, measured by gas chromatography, increased with grinding time up to a maximum concentration of 156 ppm (0.35 micromol) after 600 min. This H2 generation is considered to occur as a result of three processes: (1) structural destruction characterized by the delamination and loss of hydroxyl groups as a result of dry grinding, (2) transformation of liberated hydroxyls into water molecules by mechanochemical effects such as prototropy, and (3) H2 generation through reaction between surface water molecules and mechanoradicals created by the rupture of Si-O or Al-O-Si bonds. Although the surface area plateaued after 240 min grinding, the H2 concentration continued to increase, indicating that surface mechanoradicals are created during this later grinding stage. Thus, H2 generation can be used as an indicator of mechanoradical formation during mechanochemical treatment.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jcis.2004.02.014 | DOI Listing |
Molecules
December 2024
School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252000, China.
Diamond grinding wheels have been widely used to remove the residual features of cast parts, such as parting lines and pouring risers. However, diamond grains are prone to chemical wear as a result of their strong interaction with ferrous metals. To mitigate this wear, this study proposes the use of a novel water-based hexagonal boron nitride (hBN) as a minimum quantity lubrication (MQL) during the grinding of cast steel and conducted the grinding experiment and molecular dynamics simulation.
View Article and Find Full Text PDFSci Rep
January 2025
College of Mechanical Engineering, Zhejiang University of Technology, No.18, Chaowang Road, Hangzhou, 310014, Zhejiang Province, China.
To observe the chemical mechanical polishing (CMP) process at the atomic scale, reactive force field molecular dynamics (ReaxFF-MD) was employed to simulate the polishing of 6 H-SiC under three conditions: dry, pure water, and HO solution. This study examined the reactants on the surface of 6 H-SiC during the reaction in the HO solution, along with the dissociation and adsorption processes of HO and water molecules. The mechanisms for atom removal during the CMP process were elucidated.
View Article and Find Full Text PDFMaterials (Basel)
December 2024
Department of Materials Science and Engineering, Sunchon National University, Suncheon 57922, Republic of Korea.
This study examined the surface-grinding-induced microstructural modifications and corrosion attacks in a penetrating form of a high-Mn-low-Cr casting steel slab under humid environments. Various experimental and analytical findings from field-emission scanning electron microscopy, electron backscatter diffraction, transmission electron microscopy, and electrochemical analyses revealed that the abrasive grinding process led to the formation of a surface deformed region, comprising a recrystallized fine grain layer and multiple streamlines. Corrosion initially occurs preferentially along the boundary areas where Cr(Mn)C particles are precipitated.
View Article and Find Full Text PDFJ Dairy Sci
December 2024
Science and Technology Park, Ferdowsi University of Mashhad, Mashhad 9177948974, Iran; Department of Animal Science, Agricultural and Natural Resources Research and Education Center of Razavi Khorasan, Mashhad 91735-488, Iran. Electronic address:
Micronization, a dry-heat process, generates infrared electromagnetic short waves that can affect starch granules and gelatinization. A new method of corn processing, super-conditioned corn, a moisture-heat process, has potential to increase starch digestion and performance in calves. Therefore, incorporating super-conditioned or micronized corn in starter feed may enhance growth performance by improving total-tract starch digestion.
View Article and Find Full Text PDFEur J Pharm Biopharm
January 2025
Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan. Electronic address:
In the present study, to prepare dispersoids with high dispersion stability that can be used as mouthwash, ground mixtures of commercial rebamipide (RB) tablets and hydroxypropyl cellulose (HPC-SSL) samples were prepared by dry milling. The physicochemical properties of the ground mixture of HPC-SSL and the powder obtained from the preliminary ground RB tablets were then compared. The dispersoids' physicochemical properties, dispersion stability, retention, and diffusiveness to the mucosal surfaces were evaluated in vitro.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!