The nucleotide sequences of the upstream regions of the botulinum neurotoxin type A1 (BoNT/A1) cluster of Clostridium botulinum strain NCTC 2916 and the BoNT/A2 cluster of strain Kyoto-F were determined. A novel gene, designated orfx3, was identified following the orfx2 gene in both clusters. ORF-X2 and ORF-X3 exhibit similarity to the BoNT cluster associated P-47 protein. The BoNT/A1 and BoNT/A2 clusters share a similar gene arrangement, but exhibit differences in the spacing between certain genes. Sequences with similarity to transposases were identified in these intergenic regions, suggesting that these differences arose from an ancestral insertion event. Transcriptional analysis of the BoNT/A2 cluster revealed that the genes of the cluster are primarily synthesized as three polycistronic transcripts. Two divergent polycistronic transcripts, one encoding the orfx1, orfx2, and orfx3 genes, the second encoding the p47, ntnh, and bont/a2 genes, are transcribed from conserved BoNT cluster promoters. The third polycistronic transcript, expressed at low levels, encodes the positive regulatory botR gene and the orfx genes. This is the first complete analysis of a botulinum toxin A2 cluster.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.femsle.2004.04.002 | DOI Listing |
Commun Biol
January 2025
Center for Research on Genomics and Global Health, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, 20892, USA.
Single cell studies have transformed our understanding of cellular heterogeneity in disease but the need for fresh starting material can be an obstacle, especially in the context of international multicenter studies and archived tissue. We developed a protocol to obtain high-quality cells and nuclei from dissected human skeletal muscle archived in the preservative Allprotect® Tissue Reagent. After fluorescent imaging microscopy confirmed intact nuclei, we performed four protocol variations that compared sequencing metrics between cells and nuclei enriched by either filtering or flow cytometry sorting.
View Article and Find Full Text PDFEur J Hum Genet
January 2025
Institute of Bioinformatics, International Technology Park, Bangalore, 560066, India.
Mitochondrial membrane protein-associated neurodegeneration (MPAN) is a rare neurodegenerative disorder characterized by spastic paraplegia, parkinsonism and psychiatric and/or behavioral symptoms caused by variants in gene encoding chromosome-19 open reading frame-12 (C19orf12). We present here seven patients from six unrelated families with detailed clinical, radiological, and genetic investigations. Childhood-onset patients predominantly had a spastic ataxic phenotype with optic atrophy, while adult-onset patients were presented with cognitive, behavioral, and parkinsonian symptoms.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Laboratory Medicine and Pathology, University of Minnesota School of Medicine, 420 Delaware St SE, MMC 609, Minneapolis, MN, 55455, USA.
Within ovarian cancer research, patient-derived xenograft (PDX) models recapitulate histologic features and genomic aberrations found in original tumors. However, conflicting data from published studies have demonstrated significant transcriptional differences between PDXs and original tumors, challenging the fidelity of these models. We employed a quantitative mass spectrometry-based proteomic approach coupled with generation of patient-specific databases using RNA-seq data to investigate the proteogenomic landscape of serially-passaged PDX models established from two patients with distinct subtypes of ovarian cancer.
View Article and Find Full Text PDFDrought is one of the main environmental factors affecting plant survival and growth. Atraphaxis bracteata is a common desert plant mainly utilized in afforestation and desertification control. This study analyzed the morphological, physiological and molecular regulatory characteristics of different organs of A.
View Article and Find Full Text PDFOrphanet J Rare Dis
January 2025
Department of Neuromuscular Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, 4-1-1 Ogawa-Higashi, Kodaira, Tokyo, 187-8502, Japan.
Background: Sarcoglycanopathies (SGPs) are limb-girdle muscular dystrophies (LGMDs) that can be classified into four types, LGMDR3, LGMDR4, LGMDR5, and LGMDR6, caused by mutations in the genes, SGCA, SGCB, SGCG, and SGCD, respectively. SGPs are relatively rare in Japan. This study aims to profile the genetic variants that cause SGPs in Japanese patients.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!