Though cryogenic storage is presumed to provide nearly infinite longevity to cells, the actual shelf life achieved under ultra-cold temperatures has not been addressed theoretically or empirically. Here, we report measurable changes in germination of dried seeds stored under liquid nitrogen conditions for >10 years. There was considerable variability in the extent of deterioration among species and accessions within a species. Aging time courses for lettuce seeds stored at temperatures between 50 and -196 degrees C were fit to a form of the Avrami equation to determine rate coefficients and predict half-life of accessions. A reduction in the temperature dependency on aging rate, determined as a break in the Arrhenius plot, occurred at about -15 degrees C, and this resulted in faster deterioration than anticipated from extrapolation of kinetics measured at higher temperatures. The break in Arrhenius behavior occurred at temperatures in between the glass transition temperature (28 degrees C) and the Kauzmann temperature (-42 degrees C) and also coincided with a major triacylglycerol phase change (-40 to -7 degrees C). In spite of the faster than anticipated deterioration, cryogenic storage clearly prolonged shelf life of lettuce seeds with half-lives projected as approximately 500 and approximately 3400 years for fresh lettuce seeds stored in the vapor and liquid phases of liquid nitrogen, respectively. The benefit of low temperature storage (-18 or -135 degrees C) on seed longevity was progressively lost if seeds were first stored at 5 degrees C. Collectively, these results demonstrate that lowering storage temperature progressively increases longevity of seeds. However, cryogenic temperatures were not sufficient to stop deterioration, especially if initial stages of aging were allowed to progress at higher storage temperatures. This work contributes to reliable assessments of the potential benefit and cost of different genebanking strategies.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.cryobiol.2004.01.007DOI Listing

Publication Analysis

Top Keywords

seeds stored
16
lettuce seeds
12
seeds cryogenic
8
cryogenic storage
8
shelf life
8
liquid nitrogen
8
break arrhenius
8
seeds
7
degrees
7
temperatures
6

Similar Publications

High temperature stress seriously affects the quality and yield of vegetable crops, especially cucumber (Cucumis sativus L.). However, the metabolic dynamics and gene regulatory network of cucumber in response to high temperature stress remain poorly studied.

View Article and Find Full Text PDF

In Burkina Faso and many West African countries, Spermophagus niger (L.) is the main insect pest of Hibiscus sabdariffa seeds stored with considerable damage. Variations in bioclimatic conditions can lead to significant changes in the morphology and biology of populations of the same insect species, leading to strains that are morphologically and biologically different and that would react differently to a given control method.

View Article and Find Full Text PDF

Enhanced antioxidant activity improves deep-sowing tolerance in maize.

BMC Plant Biol

December 2024

State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong, 271018, China.

Background: Deep sowing has emerged as a vital agricultural strategy, particularly in arid and semi-arid regions, as it allows seeds to access water stored in deeper soil layers. This approach facilitates successful germination and establishment of crops, even in challenging environmental conditions. Previous studies have shown that the length of the maize mesocotyl is an important trait influencing deep-sowing tolerance.

View Article and Find Full Text PDF

A novel major QTL underlying grain copper concentration in common wheat (Triticum aestivum L.).

BMC Genomics

December 2024

Triticeae Research Institute, Sichuan Agricultural University, Huimin Road 211#, Wenjiang, Chengdu, 611130, Sichuan Province, China.

Grain copper (Cu) concentrations represent a qualitative trait mainly controlled by genetic factors, which may differ between wheat varieties from the Sichuan Basin of China and other areas. However, the differences are poorly understood. Here, we investigated the grain Cu concentration in a remaining heterozygous line population derived from a multiparental recombinant inbred line.

View Article and Find Full Text PDF

Hempseed oil (HSO) is extremely rich in unsaturated fatty acids, especially linoleic (18:2 n-6) and α-linolenic (18:3 n-3) acids, which determine its high sensitivity to oxidative and photo-oxidative degradations that can lead to rancidity despite the presence of antioxidant compounds. The aim of this work was to evaluate which material/temperature/light solutions better preserve HSO quality during its shelf life and to test NIR as a rapid, non-destructive technique for monitoring oxidation phenomena. Futura 75 hemp seeds were cold-pressed; the oil was packed into 20 mL vials of four different materials (polypropylene, clear glass, amber glass, and amber glass coated with aluminum foil) and stored for 270 days at 25 °C under diffused light and at 10 °C in dark conditions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!