Background: The assessment of the impact of healthcare interventions may help commissioners of healthcare services to make optimal decisions. This can be particularly the case if the impact assessment relates to specific patient populations and uses timely local data. We examined the potential impact on readmissions and mortality of specialist heart failure services capable of delivering treatments such as b-blockers and Nurse-Led Educational Intervention (N-LEI).
Methods: Statistical modelling of prevented or postponed events among previously hospitalised patients, using estimates of: treatment uptake and contraindications (based on local audit data); treatment effectiveness and intolerance (based on literature); and annual number of hospitalization per patient and annual risk of death (based on routine data).
Results: Optimal treatment uptake among eligible but untreated patients would over one year prevent or postpone 11% of all expected readmissions and 18% of all expected deaths for spironolactone, 13% of all expected readmisisons and 22% of all expected deaths for b-blockers (carvedilol) and 20% of all expected readmissions and an uncertain number of deaths for N-LEI. Optimal combined treatment uptake for all three interventions during one year among all eligible but untreated patients would prevent or postpone 37% of all expected readmissions and a minimum of 36% of all expected deaths.
Conclusion: In a population of previously hospitalised patients with low previous uptake of b-blockers and no uptake of N-LEI, optimal combined uptake of interventions through specialist heart failure services can potentially help prevent or postpone approximately four times as many readmissions and a minimum of twice as many deaths compared with simply optimising uptake of spironolactone (not necessarily requiring specialist services). Examination of the impact of different heart failure interventions can inform rational planning of relevant healthcare services.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC434522 | PMC |
http://dx.doi.org/10.1186/1472-6963-4-10 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!