A hybrid cell line, IOSE-Ov29, was created through fusion of cells from the human ovarian adenocarcinoma line OVCAR3 and the non-tumorigenic SV40 Tag-transfected human ovarian surface epithelial line IOSE-29. OVCAR3 cells exhibit a differentiated epithelial phenotype, whereas line IOSE-29 expresses mesenchymal characteristics that were acquired in culture by epithelio-mesenchymal transition. Microsatellite analysis, comparative genomic hybridization (CGH), and MFISH showed the genotype of the IOSE-Ov29 cells to contain components of both parent cell lines, but to be predominantly OVCAR3 derived. IOSE-Ov29 resembled OVCAR3 and differed from IOSE-29 as shown by its unlimited life span, tumorigenicity, epithelial morphology, keratin, occludin, E-cadherin and CA125 expression, increased expression of kinases of the PI3K pathway, and loss of cGMP-dependent protein kinase expression. IOSE-29-derived properties included SV40 Tag expression, growth inhibition by activin, collagen type III secretion, increased adhesion and spreading on tissue culture plastic, and increased growth rate. Proliferation of all three lines was stimulated by FSH and ATP and inhibited by GnRH I and GnRH II. Interestingly, IOSE-Ov29 was more anchorage independent than either parent line and was the only line that invaded Matrigel in Boyden chambers and formed invasive branches in collagen gels. The results indicate that IOSE-Ov29 is an IOSE-29/OVCAR3 hybrid, which differs from both parent lines genetically and phenotypically. Unexpectedly, fusion with the non-tumorigenic IOSE-29 cells enhanced malignancy-associated characteristics of OVCAR3, presumably as a result of the expression of IOSE-29-derived mesenchymal properties that are usually acquired by carcinoma cells through epithelio-mesenchymal transition during metastatic progression.

Download full-text PDF

Source
http://dx.doi.org/10.1111/j.1432-0436.2004.07204003.xDOI Listing

Publication Analysis

Top Keywords

epithelio-mesenchymal transition
12
hybrid cell
8
human ovarian
8
expression iose-29-derived
8
iose-ov29
5
cells
5
ovcar3
5
expression
5
transition neoplastic
4
neoplastic ovarian
4

Similar Publications

[Towards understanding chronic kidney disease].

Med Sci (Paris)

March 2023

Université Paris Cité, Inserm U1151, CNRS UMR 8253, institut Necker-Enfants Malades, département croissance et signalisation, Paris, France - Service d'anatomie pathologique, AP-HP, hôpital Necker-Enfants Malades, université Paris Cité, Paris, France.

Chronic kidney disease (CKD) is a global health problem affecting almost 15% of the population worldwide. After renal injury, there is a nephron loss and remaining nephrons ensure the glomerular filtration rate (GFR) with compensatory hyperplasia and hypertrophy: This is called the nephron reduction. After nephron reduction, renal function will gradually decline and lead to chronic end-stage renal failure.

View Article and Find Full Text PDF

Loss of SNAI1 induces cellular plasticity in invasive triple-negative breast cancer cells.

Cell Death Dis

September 2022

Department of Medical Biochemistry and Microbiology, Science for Life Laboratory, Uppsala University, SE-751 23, Uppsala, Sweden.

The transcription factor SNAI1 mediates epithelial-mesenchymal transition, fibroblast activation and controls inter-tissue migration. High SNAI1 expression characterizes metastatic triple-negative breast carcinomas, and its knockout by CRISPR/Cas9 uncovered an epithelio-mesenchymal phenotype accompanied by reduced signaling by the cytokine TGFβ. The SNAI1 knockout cells exhibited plasticity in differentiation, drifting towards the luminal phenotype, gained stemness potential and could differentiate into acinar mammospheres in 3D culture.

View Article and Find Full Text PDF

TGFβ selects for pro-stemness over pro-invasive phenotypes during cancer cell epithelial-mesenchymal transition.

Mol Oncol

June 2022

Department of Medical Biochemistry and Microbiology, Science for Life Laboratory, Biomedical Center, Uppsala University, Sweden.

Transforming growth factor β (TGFβ) induces epithelial-mesenchymal transition (EMT), which correlates with stemness and invasiveness. Mesenchymal-epithelial transition (MET) is induced by TGFβ withdrawal and correlates with metastatic colonization. Whether TGFβ promotes stemness and invasiveness simultaneously via EMT remains unclear.

View Article and Find Full Text PDF

Polycystic kidney diseases (PKD) represent frequent congenital and adult nephropathies in humans and domestic animals. This report illustrates an uncommon state of congenital PKD in a girgentana goat (). A stillborn female goat kid was submitted for postmortem examination and underwent macroscopic and microscopic examination.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!