Understanding the factors governing the thermal stability of proteins and correlating them to the sequence and structure is a complex and multiple problem that can nevertheless provide important information on the molecular forces involved in protein folding. Here, we have carried out a comparative genomic study to analyze the effects that different intrinsic and environmental factors have on the thermal stability of frataxins, a family of small mitochondrial iron-binding proteins found in organisms ranging from bacteria to humans. Low expression of frataxin in humans causes Friedreich's ataxia, an autosomal recessive neurodegenerative disease. The human, yeast, and bacterial orthologues were selected as representatives of different evolutionary steps. Although sharing high sequence homology and the same three-dimensional fold, the three proteins have a large variability in their thermal stabilities. Whereas bacterial and human frataxins are thermally stable, well-behaved proteins, under the same conditions yeast frataxin exists in solution as an unstable species with apprechable tracts in a conformational exchange. By designing suitable mutants, we show and justify structurally that the length of the C-terminus is an important intrinsic factor that directly correlates with the thermal stabilities of the three proteins. Thermal stability is also gained by the addition of Fe(2+). This effect, however, is not uniform for the three orthologues nor highly specific for iron: a similar albeit weaker stabilization is observed with other mono- and divalent cations. We discuss the implications that our findings have for the role of frataxins as iron-binding proteins.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/bi036049+ | DOI Listing |
Angew Chem Int Ed Engl
January 2025
Northwestern Polytechnical University, School of Chemistry and Chemical Engineering, CHINA.
The increasing power and integration of electronic devices have intensified serious heat accumulation, driving the demand for higher intrinsic thermal conductivity in thermal interface materials, such as polydimethylsiloxane (PDMS). Grafting mesogens onto PDMS can enhance its intrinsic thermal conductivity. However, the high stability of the PDMS chain limits the grafting density of mesogens, restricting the improvement in thermal conductivity.
View Article and Find Full Text PDFChemistry
January 2025
Centre CEA Paris-Saclay: Commissariat a l'Energie Atomique et aux Energies Alternatives Centre de Saclay, IRAMIS Institute, CEA - Saclay, 91190, Gif-Sur-Yvette, FRANCE.
The Schwartz's reagent Cp2Zr(H)Cl is a well known stoichiometric reagent for the reduction of unsaturated organic molecules but it has rarely been used in catalytic transformations. Herein, we describe the reduction of a variety of organic carbonates using the catalyst Cp2Zr(H)Cl in combination with Me(MeO)2SiH (DMMS) as reductant. This method was further applied to the reductive depolymerization of some polycarbonate materials and yielded silylated alcohols and diols in mild conditions.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2025
NIT Rourkela: National Institute of Technology Rourkela, Department of Chemistry, NIT Rourkela, 769008, Rourkela, INDIA.
Certain proteins and synthetic covalent polymers experience aqueous phase transitions, driving functional self-assembly. Herein, we unveil the ability of supramolecular polymers (SPs) formed by G4.Cu+ to undergo heating-induced unexpected aqueous phase transitions.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2025
Georgia Institute of Technology, School Of Chemistry and Biochemistry, 901 Atlantic Drive, 30332, United States, 30332, Atlanta, UNITED STATES OF AMERICA.
The development of chemically recyclable polymers for sustainable 3D printing is crucial to reducing plastic waste and advancing towards a circular polymer economy. Here, we introduce a new class of polythioenones (PCTE) synthesized via Michael addition-elimination ring-opening polymerization (MAEROP) of cyclic thioenone (CTE) monomers. The designed monomers are straightforward to synthesize, scalable and highly modular, and the resulting polymers display mechanical performance superior to commodity polyolefins such as polyethylene and polypropylene.
View Article and Find Full Text PDFChemSusChem
January 2025
Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, P.R. China.
Inverted perovskite solar cells (IPSCs) utilizing nickel oxide (NiO) as hole transport material have made great progress, driven by improvements in materials and interface engineering. However, challenges remain due to the low intrinsic conductivity of NiO and inefficient hole transport. In this study, we introduced MoS nanoparticles at the indium tin oxide (ITO) /NiO interface to enhance the ITO surface and optimize the deposition of NiO, resulting in increased conductivity linked to a ratio of Ni:Ni.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!