Amoebic liver abscesses (ALA) are the most frequent and severe extraintestinal clinical presentations of amoebiasis. During the early establishment of amoebae in the liver parenchyma, as well as during the extension of the tissue necrosis, parasites interact with the parenchymal liver cells and, as a consequence of these interactions, hepatocytes can be destroyed and host immune cells can become activated. However, little is known about the nature of these interactions in the liver or about the factors involved in the local immune response. In this investigation we studied the localization of Entamoeba histolytica trophozoites, TCD4+, TCD8+ cells, CD68+ macrophages and CD15+ neutrophils in human ALA using immunohistochemical techniques. Trophozoites were found close to undamaged hepatocytes in both lysed and non-lysed areas with either sparse or abundant inflammatory infiltrate. CD8+ cells were more abundant than CD4+ T cells. CD 68+ macrophages and CD15+ neutrophils were also detected, suggesting that neutrophils, macrophages and T cells might be related to the local host immune mechanisms in ALA. We also found that E. histolytica possesses proteins recognized by antibodies raised against inducible nitric oxide synthase.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/j.1365-3024.2003.00662.x | DOI Listing |
Sci Transl Med
January 2025
Division of Pediatric Hematology/Oncology, Boston Children's Hospital, Boston, MA 02115, USA.
Tissue-specific T cell immune responses play a critical role in maintaining organ health but can also drive immune pathology during both autoimmunity and alloimmunity. The mechanisms controlling intratissue T cell programming remain unclear. Here, we leveraged a nonhuman primate model of acute graft-versus-host disease (aGVHD) after allogeneic hematopoietic stem cell transplantation to probe the biological underpinnings of tissue-specific alloimmune disease using a comprehensive systems immunology approach including multiparameter flow cytometry, population-based transcriptional profiling, and multiplexed single-cell RNA sequencing and TCR sequencing.
View Article and Find Full Text PDFSci Adv
January 2025
State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Institute of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China.
Insect melanization triggered by the conversion of prophenoloxidase to active phenoloxidase via serine proteases (SPs) is an important immediate immune response. However, how phytoplasmas evade this immune response to promote their propagation in insect vectors remains unknown. Here, we demonstrate that infection of leafhopper vectors with rice orange leaf phytoplasma (ROLP) activates the mild melanization response in hemolymph.
View Article and Find Full Text PDFRheumatology (Oxford)
January 2025
Department of Cell Biology and Immunology, Institute of Parasitology and Biomedicine López-Neyra, CSIC, Granada, Spain.
Objectives: COVID-19 and systemic sclerosis (SSc) share multiple similarities in their clinical manifestations, alterations in immune response, and therapeutic options. These resemblances have also been identified in other immune-mediated inflammatory diseases where a common genetic component has been found. Thus, we decided to evaluate for the first time this shared genetic architecture with SSc.
View Article and Find Full Text PDFmBio
January 2025
Department of Integrative Biology, University of California, Berkeley, Berkeley, California, USA.
The composition of the gut microbiome is determined by a complex interplay of diet, host genetics, microbe-microbe interactions, abiotic factors, and stochasticity. Previous studies have demonstrated the importance of host genetics in community assembly of the gut microbiome and identified a central role for DBL-1/BMP immune signaling in determining the abundance of gut . However, the effects of DBL-1 signaling on gut bacteria were found to depend on its activation in extra-intestinal tissues, highlighting a gap in our understanding of the proximal factors that determine microbiome composition.
View Article and Find Full Text PDFmBio
January 2025
Centre for Microbiology and Environmental Systems Science, Department of Microbiology and Ecosystem Science, Division of Microbial Ecology, University of Vienna, Vienna, Austria.
Unlabelled: In the gut, microRNAs (miRNAs) produced by intestinal epithelial cells are secreted into the lumen and can shape the composition and function of the gut microbiome. Crosstalk between gut microbes and the host plays a key role in irritable bowel syndrome (IBS) and inflammatory bowel diseases, yet little is known about how the miRNA-gut microbiome axis contributes to the pathogenesis of these conditions. Here, we investigate the ability of miR-21, a miRNA that we found decreased in fecal samples from IBS patients, to associate with and regulate gut microbiome function.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!