Several lines of evidence suggest a role of insulin-like growth factor I (IGF-I) in the regulation of apoptosis. Up to now its impact on many specific cells is unknown. We therefore studied the effect of IGF-I on two similar mesenchymal matrix-producing cell types of the liver, the hepatic stellate cells (HSC) and the myofibroblasts (rMF). The present study aimed to reveal the influence of IGF-I on cell cycle and apoptosis of HSC and rMF and to elucidate responsible signaling. While IGF-I significantly increased DNA synthesis in HSC, cell number decreased and apoptosis increased. In rMF IGF-I also increased DNA synthesis, which is, however, followed by proliferation. Blocking extracellular signal regulating kinase (ERK) revealed that in HSC, bcl-2 upregulation and bax downregulation are effected downstream of ERK, whereas downregulation of NFkappaB and consecutive of bcl-xL is mediated upstream. In the rMF upregulation of both, the antiapoptotic bcl-2 and bcl-xL is mediated upstream of ERK. The expression of the proapoptotic bax is not regulated by IGF-I in rMF. The studies demonstrate a completely different effect and signaling of IGF-I in two morphologically and functionally similar matrix-producing cells of the liver.

Download full-text PDF

Source
http://dx.doi.org/10.1038/labinvest.3700116DOI Listing

Publication Analysis

Top Keywords

dna synthesis
16
igf-i
8
rat liver
8
liver hepatic
8
hepatic stellate
8
stellate cells
8
cells hsc
8
synthesis proliferation
8
myofibroblasts rmf
8
signaling igf-i
8

Similar Publications

Chromatin-centric insights into DNA replication.

Trends Genet

January 2025

State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, PKU-THU Center for Life Sciences, Peking University, Beijing 100871, China; Peking University Chengdu Academy for Advanced Interdisciplinary Biotechnologies, Chengdu, Sichuan 610213, China. Electronic address:

DNA replication ensures the precise transmission of genetic information from parent to daughter cells. In eukaryotes, this process involves the replication of every base pair within a highly complex chromatin environment, encompassing multiple levels of chromatin structure and various chromatin metabolic processes. Recent evidence has demonstrated that DNA replication is strictly regulated in both temporal and spatial dimensions by factors such as 3D genome structure and transcription, which is crucial for maintaining genomic stability in each cell cycle.

View Article and Find Full Text PDF

Dietary profiles of wild carnivores and Blastocystis occurrence: The case of the endangered Iberian lynx (Lynx pardinus) and systematic review.

Res Vet Sci

December 2024

CIBERINFEC, ISCIII - CIBER Infectious Diseases, Health Institute Carlos III, Madrid, Spain; Parasitology Reference and Research Laboratory, Spanish National Centre for Microbiology, Health Institute Carlos III, Majadahonda, Madrid, Spain.

Recent molecular and metagenomic studies have revealed that the obligate anaerobic protist Blastocystis is found more prevalently and with higher subtype diversities in herbivore species than in carnivore species. However, information on wild carnivore species is scarce. Here, we investigated the presence of Blastocystis by molecular methods in fecal DNA samples of free-ranging and captive Iberian lynxes from Spain (n = 243) and Portugal (n = 30).

View Article and Find Full Text PDF

As a core genetic biomolecule in ecosystems, the metabolic processes of DNA, particularly DNA replication and damage repair, are regulated by Flap endonuclease 1 (FEN1). Abnormal expression and dysfunction of FEN1 may lead to genomic instability, which can induce a variety of chromosome-associated disorders, including tumours. FEN1 has emerged as a prominent tumour marker.

View Article and Find Full Text PDF

Introduction: WhiA is a conserved protein found in numerous bacteria. It consists of an HTH DNA-binding domain linked with a homing endonuclease (HEN) domain. WhiA is one of the most conserved transcription factors in reduced bacteria of the class Mollicutes.

View Article and Find Full Text PDF

The catching-by-polymerization (CBP) oligodeoxynucleotide (oligo or ODN) purification method has been demonstrated suitable for large-scale, parallel, and long oligo purification. The authenticity of the oligos has been verified via DNA sequencing, and gene construction and expression. A remaining obstacle to the practical utility of the CBP method is affordable polymerizable tagging phosphoramidites (PTPs) that are needed for the method.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!