Anisotropic (direction-dependent) long-distance dispersal (LDD) by wind has been invoked to explain the strong floristic affinities shared among landmasses in the Southern Hemisphere. Its contribution has not yet been systematically tested because of the previous lack of global data on winds. We used global winds coverage from the National Aeronautics and Space Administration SeaWinds scatterometer to test whether floristic similarities of Southern Hemisphere moss, liverwort, lichen, and pteridophyte floras conform better with (i) the anisotropic LDD hypothesis, which predicts that connection by "wind highways" increases floristic similarities, or (ii) a direction-independent LDD hypothesis, which predicts that floristic similarities among sites increase with geographic proximity. We found a stronger correlation of floristic similarities with wind connectivity than with geographic proximities, which supports the idea that wind is a dispersal vehicle for many organisms in the Southern Hemisphere.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1126/science.1095210 | DOI Listing |
Evol Appl
January 2025
Save Our Seas Foundation Shark Research Center, Halmos College of Arts & Sciences Nova Southeastern University Dania Florida USA.
Large-bodied pelagic sharks are key regulators of oceanic ecosystem stability, but highly impacted by severe overfishing. One such species, the shortfin mako shark (), a globally widespread, highly migratory predator, has undergone dramatic population reductions and is now Endangered (IUCN Red List), with Atlantic Ocean mako sharks in particular assessed by fishery managers as overfished and in need of urgent, improved management attention. Genomic-scale population assessments for this apex predator species have not been previously available to inform management planning; thus, we investigated the population genetics of mako sharks across the Atlantic using a bi-organelle genomics approach.
View Article and Find Full Text PDFSci Rep
January 2025
Institute of Environmental Physics, Heidelberg University, Im Neuenheimer Feld 229, 69120, Heidelberg, Germany.
The deep Southern Ocean (SO) circulation plays a key role in the storage and release of CO in Earth's climate system. The uptake and release of CO strongly depend on the redistribution of well and poorly ventilated deep ocean water masses. Recently, evidence was found for possible stronger Pacific deep water overturning and subsequent intrusion into the SO during periods of reduced AMOC.
View Article and Find Full Text PDFFungal Biol
February 2025
Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Private Bag X20, Hatfield, 0028, South Africa.
Cypress canker is an important fungal disease caused by at least seven different Seiridium species. The disease has been known on Cupressaceae trees in South Africa since the 1980's, but its relevance was recently accentuated with an outbreak on native Widdringtonia nodiflora trees in the Western Cape. The causal agent, S.
View Article and Find Full Text PDFSci Total Environ
January 2025
Programa de Pós-Graduação em Clima e Ambiente, Instituto Nacional de Pesquisas da Amazônia, Universidade do Estado do Amazonas, Av. André Araújo, 2936, Bairro Aleixo, 69060-001 Manaus, AM, Brazil.
The teleconnections between El Niño-Southern Oscillation (ENSO), the Indian Ocean Dipole (IOD), and Tropical North Atlantic warming (+TNA) play a critical role in characterizing extreme drought events in the Amazon Basin (AB). This study examines the seven most recent drought extreme events up to 2023, using seasonal composites of the sea surface temperature and atmospheric variables over a five-quarter period starting at the austral spring(-1) of the year preceding that when the lowest water level at Manaus port was recorded. Two distinct patterns emerge, driven by consecutive ENSO events with opposite phases, referred to as cyclic La Niña-El Niño and cyclic El Niño-La Niña drought events.
View Article and Find Full Text PDFNat Commun
January 2025
School of Atmospheric Sciences, Sun Yat-Sen University, and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, China.
The boreal summer circumglobal teleconnection (CGT) provides a primary predictability source for mid-latitude Northern Hemisphere climate anomalies and extreme events. Here, we show that the CGT's circulation structure has been displaced westward by half a wavelength since the late 1970s, more severely impacting heatwaves and droughts over East Europe, East Asia, and southwestern North America. We present empirical and modelling evidence of the essential role of El Niño-Southern Oscillation (ENSO) in shaping this change.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!