The common preconception about central nervous system neurones is that thousands of small postsynaptic potentials sum across the entire dendritic tree to generate substantial firing rates, previously observed in in vivo experiments. We present evidence that local inputs confined to a single basal dendrite can profoundly influence the neuronal output of layer V pyramidal neurones in the rat prefrontal cortical slices. In our experiments, brief glutamatergic stimulation delivered in a restricted part of the basilar dendritic tree invariably produced sustained plateau depolarizations of the cell body, accompanied by bursts of action potentials. Because of their small diameters, basolateral dendrites are not routinely accessible for glass electrode measurements, and very little is known about their electrical properties and their role in information processing. Voltage-sensitive dye recordings were used to follow membrane potential transients in distal segments of basal branches during sub- and suprathreshold glutamate and synaptic stimulations. Recordings were obtained simultaneously from multiple dendrites and multiple points along individual dendrites, thus showing in a direct way how regenerative potentials initiate at the postsynaptic site and propagate decrementally toward the cell body. The glutamate-evoked dendritic plateau depolarizations described here are likely to occur in conjunction with strong excitatory drive during so-called 'UP states', previously observed in in vivo recordings from mammalian cortices.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1664906 | PMC |
http://dx.doi.org/10.1113/jphysiol.2004.061416 | DOI Listing |
J Inherit Metab Dis
January 2025
Department of Complex Trait Genetics, Centre for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands.
X-linked adrenoleukodystrophy (ALD) is a peroxisomal disorder resulting from pathogenic variants in the ABCD1 gene that primarily affects the nervous system and is characterized by progressive axonal degeneration in the spinal cord and peripheral nerves and leukodystrophy. Dysfunction of peroxisomal very long-chain fatty acid (VLCFA) degradation has been implicated in ALD pathology, but the impact on astrocytes, which critically support neuronal function, remains poorly understood. Fibroblasts from four ALD patients were reprogrammed to generate human-induced pluripotent stem cells (hiPSC).
View Article and Find Full Text PDFHypertens Res
December 2024
Department of Pharmacology, Graduate School of Medicine, Ehime University, Tohon, Ehime, Japan.
iScience
December 2024
Visual Neuroscience, Department of Neuroscience, Carl von Ossietzky Universität Oldenburg, Oldenburg, Germany.
The topographic complexity of the mouse retina has long been underestimated. However, functional gradients exist, which reflect the non-uniform statistics of the visual environment. Horizontal cells are the first visual interneurons that shape the receptive fields of down-stream neurons.
View Article and Find Full Text PDFNeurobiol Dis
December 2024
Center for Precision Psychiatry, Division of Mental Health and Addiction, Oslo University Hospital, Institute of Clinical Medicine, University of Oslo, Oslo, Norway; KG Jebsen Centre for Neurodevelopmental Disorders, University of Oslo and Oslo University Hospital, Oslo, Norway. Electronic address:
The observation that the risk of developing Alzheimer's disease is reduced in individuals with high premorbid cognitive functioning, higher educational attainment, and occupational status has led to the 'cognitive reserve' hypothesis. This hypothesis suggests that individuals with greater cognitive reserve can tolerate a more significant burden of neuropathological changes before the onset of cognitive decline. The underpinnings of cognitive reserve remain poorly understood, although a shared genetic basis between measures of cognitive reserve and Alzheimer's disease has been suggested.
View Article and Find Full Text PDFNeurochem Res
November 2024
División de Neurociencias, Centro de Investigación Biomédica de Occidente, Instituto Mexicano del Seguro Social, Guadalajara, Jalisco, México.
Lesions in the motor cortex induced by contusions or pathological insults can exert the degeneration of afferent neurons lying distal to these lesions. Axon degeneration and demyelination are hallmarks of several diseases sharing pathophysiological and clinical characteristics. These conditions are very disabling due to the disruption of motor abilities, with lesions that affect this area proving to be a therapeutic challenge, which has driven increasing efforts to search for treatments.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!