Neisseria meningitidis acquires iron through the action of the transferrin (Tf) receptor, which is composed of the Tf-binding proteins A and B (TbpA and TbpB). Meningococci can be classified into isotype I and II strains depending on whether they harbor a type I or II form of TbpB. Both types of TbpB have been shown to differ in their genomic, biochemical, and antigenic properties. Here we present a comparative study of isogenic mutants deficient in either or both Tbps from the isotype I strain B16B6 and isotype II strain M982. We show that TbpA is essential in both strains for iron uptake and growth with iron-loaded human Tf as a sole iron source. No growth has also been observed for the TbpB- mutant of strain B16B6, as shown previously, whereas the growth of the analogous mutant in M982 was similar to that in the wild type. This indicates that TbpB in the latter strain plays a facilitating but not essential role in iron uptake, which has been observed previously in similar studies of other bacteria. These data are discussed in relation to the fact that isotype II strains represent more than 80% of serogroup B meningococcal strains. The contribution of both subunits in the bacterial virulence of strain M982 has been assessed in a murine model of bacteremia. Both the TbpB- TbpA- mutant and the TbpA- mutant are shown to be nonvirulent in mice, whereas the virulence of the TbpB- mutant is similar to that of the wild type.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC415691PMC
http://dx.doi.org/10.1128/IAI.72.6.3461-3470.2004DOI Listing

Publication Analysis

Top Keywords

isotype strain
12
transferrin receptor
8
neisseria meningitidis
8
isotype strains
8
strain b16b6
8
strain m982
8
iron uptake
8
tbpb- mutant
8
wild type
8
tbpa- mutant
8

Similar Publications

Immunogenicity and protective efficacy of recombinant chimeric antigens based on surface proteins of .

Front Immunol

December 2024

Department of Molecular Microbiology, Institute of Microbiology, Biotechnology and Immunology, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland.

Introduction: Toxoplasmosis is caused by the opportunistic, cosmopolitan protozoan is one of the most common parasitoses in the world. This parasite can pose a threat to people with immunodeficiency but also to the fetus, since the invasion can lead to miscarriages. Moreover, this parasite can contribute to economic losses in livestock farming.

View Article and Find Full Text PDF

Toxoplasmosis is a foodborne zoonotic parasitic disease caused by Toxoplasma gondii, which seriously threatens to human health and causes economic losses. At present, there is no effective vaccine strategy for the prevention and control of toxoplasmosis. T.

View Article and Find Full Text PDF

Unraveling the impact of SARS-CoV-2 mutations on immunity: insights from innate immune recognition to antibody and T cell responses.

Front Immunol

December 2024

Laboratory of Molecular Medicine, Department of Clinical Immunology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark.

Throughout the COVID-19 pandemic, the emergence of new viral variants has challenged public health efforts, often evading antibody responses generated by infections and vaccinations. This immune escape has led to waves of breakthrough infections, raising questions about the efficacy and durability of immune protection. Here we focus on the impact of SARS-CoV-2 Delta and Omicron spike mutations on ACE-2 receptor binding, protein stability, and immune response evasion.

View Article and Find Full Text PDF

Novel strains, JCM 35526 and 261-2C, were isolated from biofilm formed on a reverse osmosis membrane in the phosphate recovery system of a semiconductor factory. Morphological, biochemical, physiological, and chemotaxonomic analyses as well as sequence analysis of the concatenated internal transcribed spacer region and D1/D2 domains of the large subunit of the rRNA gene confirmed that strains JCM 35526 and 261-2C, were distinct from all currently known species. The holotype and isotype strains of the new species, which is named , are JCM 35526 and MUCL 58310, respectively.

View Article and Find Full Text PDF

The genus , known for its melanized, yeast-like appearance, includes a diverse group of fungi with significant implications across various fields. An isolate representing a novel species was identified within this genus from a ginger tuber from India, based on morphological characteristics and molecular phylogenetic analysis. Phylogenetic analysis of the D1/D2 domain of the 26S LSU rRNA gene, SSU rRNA gene and the internal transcribed spacer (ITS) region confirmed this strain as a new species.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!