Effects of growth phase and extracellular slime on photodynamic inactivation of gram-positive pathogenic bacteria.

Antimicrob Agents Chemother

Wellman Laboratories of Photomedicine, Massachusetts General Hospital, BAR314B, 40 Blossom St., Boston, MA 02114-2698, USA.

Published: June 2004

The emergence of antibiotic resistance among pathogenic bacteria has led to efforts to find alternative antimicrobial therapeutics to which bacteria will not be easily able to develop resistance. One of these may be the combination of nontoxic dyes (photosensitizers [PS]) and visible light, known as photodynamic therapy, and we have reported its use to treat localized infections in animal models. While it is known that gram-positive species are generally susceptible to photodynamic inactivation (PDI), the factors that govern variation in degrees of killing are unknown. We used isogenic pairs of wild-type and transposon mutants deficient in capsular polysaccharide and slime production generated from Staphylococcus epidermidis and Staphylococcus aureus to examine the effects of extracellular slime on susceptibility to PDI mediated by two cationic PS (a polylysine-chlorin(e6) conjugate, pL-c(e6), and methylene blue [MB]) and an anionic molecule, free c(e6), and subsequent exposure to 665-nm light at 0 to 40 J/cm(2). Free c(e6) gave more killing of mutant strains than wild type, despite the latter taking up more PS. Log-phase cultures were killed more than stationary-phase cultures, and this correlated with increased uptake. The cationic pL-c(e6) and MB gave similar uptakes and killing despite a 50-fold difference in incubation concentration. Differences in susceptibility between strains and between growth phases observed with free c(e6) largely disappeared with the cationic compounds despite significant differences in uptake. These data suggest that slime production and stationary phase can be obstacles against PDI for gram-positive bacteria but that these obstacles can be overcome by using cationic PS.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC415578PMC
http://dx.doi.org/10.1128/AAC.48.6.2173-2178.2004DOI Listing

Publication Analysis

Top Keywords

free ce6
12
extracellular slime
8
photodynamic inactivation
8
pathogenic bacteria
8
slime production
8
effects growth
4
growth phase
4
phase extracellular
4
slime
4
slime photodynamic
4

Similar Publications

Tumor-targeted nanosystem with hypoxia inducible factor 1α inhibition for synergistic chemo-photodynamic therapy against hypoxic tumor.

Colloids Surf B Biointerfaces

December 2024

School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; National Innovation Platform for medical industry-education integration, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; State Key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China. Electronic address:

Photodynamic therapy (PDT) holds an essential role in the therapy of tumors. However, PDT consumes tissue oxygen and diminishes its own efficacy by inducing tumor hypoxia through the HIF-1α/VEGF pathway. Therefore, overcoming the photodynamic exacerbation of tumor hypoxia could reverse tumor microenvironment and enhance PDT.

View Article and Find Full Text PDF

The efficacy of photodynamic therapy (PDT) based on traditional photosensitizers is generally limited by the cellular redox homeostasis system due to the reactive oxygen species (ROS) scavenging effect of glutathione (GSH). In this study, buthionine sulfoximine (BSO), a GSH inhibitor, was conjugated with the amine group of chitosan oligosaccharide (COS) using a thioketal linker (COSthBSO) to liberate BSO and chlorine e6 (Ce6) under oxidative stress, and then, Ce6-COSthBSO NP (Ce6-COSthBSO NP), fabricated by a dialysis procedure, showed an accelerated release rate of BSO and Ce6 by the addition of hydrogen peroxide, indicating that nanophotosensitizers have ROS sensitivity. In the in vitro cell culture study using HCT116 colon carcinoma cells, a combination of BSO and Ce6 efficiently suppressed the intracellular GSH and increased ROS production compared to the sole treatment of Ce6.

View Article and Find Full Text PDF

Different types of photosensitizers (PSs) have different dynamics and intensities of accumulation, depending on the type of tumor or different areas within the same tumor. This determines the effectiveness of fluorescence diagnostics and photodynamic therapy (PDT). This paper studies the processes of 5-aminolevulinic acid (5-ALA)-induced protoporphyrin IX (PpIX) and chlorin e6 (Ce6) accumulation in the central and border zones of a tumor after combined administration of two PSs into the patient's body.

View Article and Find Full Text PDF

Cell membrane-camouflaged nanoarchitectonics of photosensitizer nanoparticles for enhanced phototherapy in surgery.

J Colloid Interface Sci

February 2025

Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Lab of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100049, China. Electronic address:

Surgical risk and wound area can be reduced by diminishing tumor volume before surgery. The chemotherapy and radiotherapy currently used that can reduce the tumor volume generally cause severe systemic side effects. Phototherapy has recently emerged as an effective treatment modality for superficial cancers.

View Article and Find Full Text PDF

An immunotherapeutic hydrogel booster inhibits tumor recurrence and promotes wound healing for postoperative management of melanoma.

Bioact Mater

December 2024

Department of Laboratory Medicine, Dongguan Institute of Clinical Cancer Research, Dongguan Key Laboratory of Precision Diagnosis and Treatment for Tumors, The Tenth Affiliated Hospital of Southern Medical University (Dongguan People's Hospital), Dongguan, 523058, China.

Low tumor immunogenicity, immunosuppressive tumor microenvironment, and bacterial infections have emerged as significant challenges in postsurgical immunotherapy and skin regeneration for preventing melanoma recurrence. Herein, an immunotherapeutic hydrogel booster (GelMA-CJCNPs) was developed to prevent postoperative tumor recurrence and promote wound healing by incorporating ternary carrier-free nanoparticles (CJCNPs) containing chlorine e6 (Ce6), a BRD4 inhibitor (JQ1), and a glutaminase inhibitor (C968) into methacrylic anhydride-modified gelatin (GelMA) dressings. GelMA-CJCNPs reduced glutathione production by inhibiting glutamine metabolism, thereby preventing the destruction of reactive oxygen species generated by photodynamic therapy, which could amplify oxidative stress to induce severe cell death and enhance immunogenic cell death.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!