Prediction of the formulation dependence of the glass transition temperatures of amine-epoxy copolymers using a QSPR based on the AM1 method.

J Chem Inf Comput Sci

United States Army Research Laboratory, Weapons and Materials Research Directorate, AMSRL-WM-BD, Aberdeen Proving Ground, MD 21005-5066, USA.

Published: March 2005

A designer Quantitative Structure-Property Relationship, based upon molecular properties calculated using the AM1 semiempirical quantum mechanical method, was developed to predict the glass transition temperature of amine-cured epoxy resins based on the diglycidyl ether of bisphenol A. The QSPR (R2 = 0.9977) was generated using the regression analysis program, COmprehensive DEscriptors for Structural and Statistical Analysis. By applying an ad hoc treatment based on the elementary probability theory to the quantitative structure-property relationship analysis a method was developed for computing bulk polymer glass transition temperatures for stoichiometric and nonstoichiometric monomeric formulations. A model polymer was synthesized and found to validate our model predictions.

Download full-text PDF

Source
http://dx.doi.org/10.1021/ci030290dDOI Listing

Publication Analysis

Top Keywords

glass transition
12
transition temperatures
8
quantitative structure-property
8
structure-property relationship
8
method developed
8
prediction formulation
4
formulation dependence
4
dependence glass
4
temperatures amine-epoxy
4
amine-epoxy copolymers
4

Similar Publications

Cryopreservation of brain cell structure: a review.

Free Neuropathol

January 2024

Friedman Brain Institute, Departments of Pathology, Neuroscience, and Artificial Intelligence & Human Health, Icahn School of Medicine at Mount Sinai, New York, New York, USA.

Cryopreservation, the preservation of tissues at subzero temperatures, is a mainstay of brain banking that allows for the storage of brain tissue without the use of chemical fixatives. This is particularly important for molecular studies that are incompatible with tissue fixation. However, brain tissue is vulnerable to various forms of damage during the cryopreservation process, in particular due to the phase transition of water from a liquid to a solid state with the formation of ice crystals, which can disrupt cellular morphology.

View Article and Find Full Text PDF

Xylan thermoplastics with closed-loop recyclability.

Carbohydr Polym

March 2025

Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, China; State Key Laboratory of Efficient Production of Forest Resources, Beijing Forestry University, Beijing 100083, China. Electronic address:

Xylan-derived packaging materials have gained considerable popularity owing to their renewability, non-toxicity, and biodegradability. However, thermoforming is challenging owing to its rigid structure and hydrogen-bonding network of the xylan molecular chain, which limits its large-scale production. Herein, a heat-processable xylan derivative, xylan cinnamate (XC), was synthesized via an esterification reaction in ionic liquids.

View Article and Find Full Text PDF

Thermochromic smart windows have been widely developed for building energy saving. However, most smart windows suffer from limited energy-saving performance, fixed phase transition temperature, and are not suitable for the temperature regulation needs of different application scenarios. Herein, a unique self-adaptive thermochromic hydrogel (HBPEC-PNA) with self-moisture-absorbing performance is reported that assembles solar energy cooling and evaporative heat dissipation.

View Article and Find Full Text PDF

Designing mechanically robust one-component nanocomposites via hyperbranched cellulose nanofibril grafted vegetable oil polymers.

Carbohydr Polym

March 2025

Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China; Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry (CAF), No 16, Suojin Wucun, Nanjing, China. Electronic address:

Achieving effective interfacial compatibility between hydrophilic cellulose nanofibrils (CNFs) and hydrophobic vegetable oil polymers (VOPs) remained a significant challenge. To address this issue, we developed a one-component nanocomposite (OCN) based on hyperbranched CNF-grafted VOPs. Rigid precursor initiator poly (vinylbenzyl chloride) (PVBC) was first grafted onto the CNF surface via phase-transfer catalysis, forming a branched macroinitiator (CNF-g-PVBC) with chlorine contents ranging from 4.

View Article and Find Full Text PDF

A synchronized event-cue feedback loop integrating a 3D printed wearable flexible sensor-tactor platform.

Biosens Bioelectron

January 2025

Department of Physics, Virginia Commonwealth University, Richmond, VA, 23284, USA; Institute for Sustainable Energy and Environment, Virginia Commonwealth University, Richmond, VA, 23284, USA. Electronic address:

Wearable devices designed for the somatosensory system aim to provide event-cue feedback electronics and therapeutic stimulation to the peripheral nervous system. This prompts a neurological response that is relayed back to the central nervous system. Unlike virtual reality tools, these devices precisely target peripheral mechanoreceptors by administering specific stimuli.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!