Chlorophyll degradation enzyme (i.e., chlorophyllase, Mg-dechelatase, and chlorophyll oxidase) activities of aphid-infested and uninfested 'Tugela' and Tugela near-isogenic wheat lines (i.e., Tugela-Dn1, Tugela-Dn2, and Tugela-Dn5) were assayed. Chlorophyllase activity was higher in bird cherry-oat aphid, Rhopalosiphum padi (L.) (Homoptera: Aphididae),-infested wheat lines compared with Russian wheat aphid, Diuraphis noxia (Mordvilko) (Homoptera: Aphididae)]-infested and uninfested plants. Mg-dechelatase activity was higher in D. noxia-infested wheat lines than in R. padi-infested and uninfested plants. Also, Mg-dechelatase activity was lower in Tugela wheat infested with D. noxia than in Tugela near-isogenic lines with Dn genes. Based on the in vitro assays of chlorophyll degradation enzyme (i.e., chlorophyllase and Mg-dechelatase) activities, we proposed that the chlorotic symptoms observed on D. noxia-infested Tugela wheat were most likely to be elicited by unbalanced chlorophyll biosynthesis and degradation.

Download full-text PDF

Source
http://dx.doi.org/10.1603/0022-0493-97.2.661DOI Listing

Publication Analysis

Top Keywords

chlorophyll degradation
12
wheat lines
12
near-isogenic lines
8
degradation enzyme
8
enzyme chlorophyllase
8
chlorophyllase mg-dechelatase
8
tugela near-isogenic
8
activity higher
8
uninfested plants
8
plants mg-dechelatase
8

Similar Publications

Hydrogels, three-dimensional polymeric networks capable of absorbing and retaining significant amounts of aqueous solution, offer a promising platform for controlled release of desired compounds. In this study, we explored the effects of urea delivery through galactoxyloglucan-sodium alginate hydrogels on the phenotypic and metabolic responses of , a vital oilseed and vegetable crop. The experiments were conducted with four treatments: control (without hydrogel beads and urea), direct urea supplementation (U), hydrogel beads with urea (HBWU), and hydrogel beads without urea (HBWOU).

View Article and Find Full Text PDF

Background: Glyphosate is an extensively employed herbicide in agriculture, specifically for sugarcane cultivation. The situation is different with the extensive physiological and genetic effects exerted by this herbicide on a range of plant species, including sugarcane, whose model basis is still poorly characterized, although its primary mode of action, which acts on the EPSPS enzyme in the shikimic acid pathway, is completely elucidated. The current study was aimed at investigating the stability of glyphosate formulation, molecular interactions of glyphosate formulation with rbcL enzyme associated with chlorophyll metabolism, and its effects on varieties of sugarcane.

View Article and Find Full Text PDF

The aim of this study was to examine the drying kinetics of L. fruits at various maturation stages (I to V) using a range of mathematical models (Henderson and Pabis, Lewis, Logarithmic, Midilli, and Page). Additionally, an assessment of the resulting flours' quality was conducted.

View Article and Find Full Text PDF

Biostimulants stimulate plant growth and tolerance to salinity stress, which creates unfavorable conditions for plant growth from emergence to harvest; however, little is known about their roles in triggering salt tolerance. Therefore, the study aimed to determine how applying a foliar plant-derived biostimulant (Aminolom Enzimatico® 24%) affects the growth (leaf area, biomass weight, root diameter, root fresh weight, and water-soluble dry matter), physiology (chlorophyll content, electrolyte leakage, cell membrane stability, and relative water content), and stomata of the lower and upper parts of leaves in radish plants ( L.) under salinity stress.

View Article and Find Full Text PDF

Biochemical evidence for the diversity of LHCI proteins in PSI-LHCI from the red alga Galdieria sulphuraria NIES-3638.

Photosynth Res

January 2025

Research Institute for Interdisciplinary Science and Graduate School of Natural Science and Technology, Okayama University, Okayama, 700-8530, Japan.

Red algae are photosynthetic eukaryotes whose light-harvesting complexes (LHCs) associate with photosystem I (PSI). In this study, we examined characteristics of PSI-LHCI, PSI, and LHCI isolated from the red alga Galdieria sulphuraria NIES-3638. The PSI-LHCI supercomplexes were purified using anion-exchange chromatography followed by hydrophobic-interaction chromatography, and finally by trehalose density gradient centrifugation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!