Chlorophyll degradation enzyme (i.e., chlorophyllase, Mg-dechelatase, and chlorophyll oxidase) activities of aphid-infested and uninfested 'Tugela' and Tugela near-isogenic wheat lines (i.e., Tugela-Dn1, Tugela-Dn2, and Tugela-Dn5) were assayed. Chlorophyllase activity was higher in bird cherry-oat aphid, Rhopalosiphum padi (L.) (Homoptera: Aphididae),-infested wheat lines compared with Russian wheat aphid, Diuraphis noxia (Mordvilko) (Homoptera: Aphididae)]-infested and uninfested plants. Mg-dechelatase activity was higher in D. noxia-infested wheat lines than in R. padi-infested and uninfested plants. Also, Mg-dechelatase activity was lower in Tugela wheat infested with D. noxia than in Tugela near-isogenic lines with Dn genes. Based on the in vitro assays of chlorophyll degradation enzyme (i.e., chlorophyllase and Mg-dechelatase) activities, we proposed that the chlorotic symptoms observed on D. noxia-infested Tugela wheat were most likely to be elicited by unbalanced chlorophyll biosynthesis and degradation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1603/0022-0493-97.2.661 | DOI Listing |
Mol Omics
January 2025
Department of Biology, National Changhua University of Education, Changhua 500, Taiwan.
Hydrogels, three-dimensional polymeric networks capable of absorbing and retaining significant amounts of aqueous solution, offer a promising platform for controlled release of desired compounds. In this study, we explored the effects of urea delivery through galactoxyloglucan-sodium alginate hydrogels on the phenotypic and metabolic responses of , a vital oilseed and vegetable crop. The experiments were conducted with four treatments: control (without hydrogel beads and urea), direct urea supplementation (U), hydrogel beads with urea (HBWU), and hydrogel beads without urea (HBWOU).
View Article and Find Full Text PDFMol Biol Rep
January 2025
Agricultural Research Center(ARC), Sugar Crops Research Institute(SCRI), Giza, Egypt.
Background: Glyphosate is an extensively employed herbicide in agriculture, specifically for sugarcane cultivation. The situation is different with the extensive physiological and genetic effects exerted by this herbicide on a range of plant species, including sugarcane, whose model basis is still poorly characterized, although its primary mode of action, which acts on the EPSPS enzyme in the shikimic acid pathway, is completely elucidated. The current study was aimed at investigating the stability of glyphosate formulation, molecular interactions of glyphosate formulation with rbcL enzyme associated with chlorophyll metabolism, and its effects on varieties of sugarcane.
View Article and Find Full Text PDFHeliyon
January 2025
University of Campinas, School of Food Engineering, 13056-405, Campinas, SP, Brazil.
The aim of this study was to examine the drying kinetics of L. fruits at various maturation stages (I to V) using a range of mathematical models (Henderson and Pabis, Lewis, Logarithmic, Midilli, and Page). Additionally, an assessment of the resulting flours' quality was conducted.
View Article and Find Full Text PDFPeerJ
January 2025
Department of Horticulture, Faculty of Agriculture and Natural Sciences, Bilecik Şeyh Edebali University, Bilecik, Türkiye.
Biostimulants stimulate plant growth and tolerance to salinity stress, which creates unfavorable conditions for plant growth from emergence to harvest; however, little is known about their roles in triggering salt tolerance. Therefore, the study aimed to determine how applying a foliar plant-derived biostimulant (Aminolom Enzimatico® 24%) affects the growth (leaf area, biomass weight, root diameter, root fresh weight, and water-soluble dry matter), physiology (chlorophyll content, electrolyte leakage, cell membrane stability, and relative water content), and stomata of the lower and upper parts of leaves in radish plants ( L.) under salinity stress.
View Article and Find Full Text PDFPhotosynth Res
January 2025
Research Institute for Interdisciplinary Science and Graduate School of Natural Science and Technology, Okayama University, Okayama, 700-8530, Japan.
Red algae are photosynthetic eukaryotes whose light-harvesting complexes (LHCs) associate with photosystem I (PSI). In this study, we examined characteristics of PSI-LHCI, PSI, and LHCI isolated from the red alga Galdieria sulphuraria NIES-3638. The PSI-LHCI supercomplexes were purified using anion-exchange chromatography followed by hydrophobic-interaction chromatography, and finally by trehalose density gradient centrifugation.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!