Cereal leaf beetle, Oulema melanopus (L.), invaded northern Alabama and Georgia more than a decade ago and since has become an economic pest of winter wheat and other cereal crops in the southeastern United States. A series of trials was conducted beginning in 1995 to determine optimal rate and timing of applications of selected foliar insecticides for managing cereal leaf beetle in soft red winter wheat. These trials, cage studies with larvae, and a manual defoliation experiment were used to provide information on cereal leafbeetle yield loss relationships and to develop economic decision rules for cereal leaf beetle in soft red winter wheat. Malathion, methomyl, carbaryl, and spinosad effectively controlled larval infestations when treatments were applied after most eggs had hatched. Encapsulated endotoxin of Bacillus thuringiensis, methyl parathion, and disulfoton applied at the lowest labeled rates were not effective treatments. Organophosphate insecticides generally were not effective when applied before most eggs had hatched. The most effective treatments were the low rates of lambda cyhalothrin when applied early while adults were still laying eggs and before or near 50% egg hatch. These early applications applied at or before spike emergence virtually eliminated cereal leaf beetle injury. The manual defoliation study demonstrated that defoliation before spike emergence has greater impact on grain yield and yield components than defoliation after spike emergence. Furthermore, flag leaf defoliation causes more damage than injury to lower leaves. Grain test weight and kernel weight were not affected by larval injury in most trials. Regression of larval numbers and yield losses calculated a yield loss of 12.65% or 459 kg/ha per larva per stem, which at current application costs suggested an economic threshold of 0.4 larvae per stem during the spike emergence to anthesis stages.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1093/jee/97.2.374 | DOI Listing |
J Environ Manage
January 2025
School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya, 572025, China. Electronic address:
Soil salinity is represent a significant environmental stressor that profoundly impairs crop productivity by disrupting plant physiological functions. To mitigate this issue, the combined application of biochar and nanoparticles has emerged as a promising strategy to enhance plant salt tolerance. However, the long-term residual effects of this approach on cereal crops remain unclear.
View Article and Find Full Text PDFFront Plant Sci
December 2024
Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering and Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu, Sichuan, China.
Microplastics are widely present in the environment and can adversely affect plants. In this paper, the effects of different concentrations of microplastics on physiological indices and metabolites of highland barley were investigated for the first time using a metabolomics approach, and revealed the response mechanism of barley seedlings to polystyrene microplastics (PS-MPs) was revealed. The results showed that the aboveground biomass of highland barley exposed to low (10 mg/L) and medium (50 mg/L) concentrations of PS-MPs increased by 32.
View Article and Find Full Text PDFFront Plant Sci
December 2024
Genebank Department, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Seeland, Germany.
Wheat ( spp.) is one of the most important cereal crops in the world. Several diseases affect wheat production and can cause 20-80% yield loss annually.
View Article and Find Full Text PDFCold Spring Harb Protoc
December 2024
Christopher S. Bond Life Sciences Center, Division of Biological Sciences, Interdisciplinary Plant Group, University of Missouri, Columbia, Missouri 65211, USA
Amino acid analysis is a vital part of analytical biochemistry. The increasing demand for low nitrogen fertilization and for plant-based diets with balanced amino acid levels and composition have made it crucial to develop reliable, fast, and affordable methods for analyzing amino acids in plants. As maize accounts for 43% of global cereal production, improving the amino acid composition of its kernels (i.
View Article and Find Full Text PDFPLoS One
December 2024
Department of Botany, Bahauddin Zakriya University, Multan, Pakistan.
Drought-induced stress presents a substantial threat as it disrupts the normal growth of cereal crops and leads to decreased yields. The persistent occurrence of drought conditions significantly impacts the growth and development of pearl millet. This study aimed to explore how calcium chloride (CaCl2) regulates the growth of pearl millet when it faces a lack of water.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!