The tripartite L-ascorbate permease of Escherichia coli is the first functionally characterized member of a large family of enzyme II complexes (SgaTBA, encoding enzymes IIC, IIB and IIA) of the bacterial phosphotransferase system (PTS). We here report bioinformatic analyses of these proteins. Forty-five homologous systems from a wide variety of bacteria were identified, but no homologues were found in archaea or eukaryotes. These systems fell into five structural types: (1) IIC, IIB and IIA are encoded by distinct genes; (2) IIC and IIB are encoded by distinct genes, but the IIA-encoding gene is absent; (3) IIC and IIB are encoded by a fused gene, but IIA is a distinct gene product; (4) IIA and IIB are fused, but IIC is encoded by a distinct gene, and (5) IIC and IIB are encoded by distinct genes, but IIA is fused to a transcriptional regulator. Phylogenetic analyses revealed that gene fusion/splicing events have occurred repeatedly during the evolutionary divergence of family members, although no evidence for shuffling of constituents between systems was obtained. The SgaTBA family proved to be distantly related to the GatCBA family of PTS permeases, and this family was also analyzed. In contrast to the SgaTBA family, no gene splicing/fusion has occurred during the evolutionary divergence of GatCBA family members as each domain is always encoded by a distinct gene. However, GatC homologues were identified in organisms that lack other PTS proteins, suggesting a transport mechanism not coupled to substrate phosphorylation. Topological analyses suggest that in contrast to all other PTS permeases, IIC proteins of the Sga and Gat families exhibit 12 transmembrane alpha-helical segments and are distantly related to secondary carriers. Like many secondary carriers, GatC (IIC) homologues could be shown to have arisen by an ancient intragenic duplication event. These results suggest that the Sga and Gat families of PTS permeases comprise a small superfamily in which the transmembrane IIC domains evolved independently of all other known PTS permeases.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1159/000077250 | DOI Listing |
Ital J Dermatol Venerol
January 2025
Emilia-Romagna Cancer Registry, Romagna Unit, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) Dino Amadori, Meldola, Forlì, Italy.
Background: The epidemiology of skin melanoma (SM) is rapidly changing. Therefore, we aimed at updating up to 2024 the Italian estimates on SM providing the number of incident and prevalent cases, the deaths and the distribution by stage at diagnosis.
Methods: Incidence was extrapolated from age- and sex-specific International Agency for Research on Cancer (IARC) estimates from 2022 to 2025.
BMC Plant Biol
January 2025
Institute of Chinese Herbel Medicines, Henan Academy of Agricultural Sciences, Zhengzhou , Henan, 450002, China.
Background: WRKY transcription factors constitute one of the largest families of plant transcriptional regulators, playing pivotal roles in plant responses to biotic and abiotic stresses, as well as in hormonal signaling and secondary metabolism regulation. However, a comprehensive analysis of the WRKY family in Carthamus tinctorius (safflower) is lacking. This study aims to identify and characterize WRKY genes in safflower to enhance understanding of their roles in stress responses and metabolic regulation.
View Article and Find Full Text PDFUltrastruct Pathol
January 2025
Department of Medical Histology and Cell Biology, Faculty of Medicine, Mansoura University, Mansoura, Egypt.
There is an important concern about the potential health and environmental risks that may develop due to exposure to copper oxide nanoparticles (CuO-NPs). Selenium is an essential trace element. It supports the expression of a variety of selenoproteins.
View Article and Find Full Text PDFEndocrine
January 2025
Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, China.
Purpose: To evaluate the diagnostic value of different subtypes of non-punctate echogenic foci in thyroid malignancy.
Methods: Retrospective research of 342 thyroid nodules with calcification was performed. The echogenic foci were divided into punctate echogenic foci (type I) and non-punctate echogenic foci (type II), and type II were further divided into four subtypes: macrocalcification (type IIa), continuous peripheral calcification (type IIb), discontinuous peripheral calcification (type IIc) and isolated calcification (type IId).
BMC Genomics
January 2025
College of Biological Science and Food Engineering, Southwest Forestry University, Kunming, Yunnan Province, 650224, China.
Background: WRKY transcription factors (TFs) regulate plant responses to environmental stimuli and development, including flowering. Despite extensive research on different species, their role in the invasive plant Mikania micrantha remains to be explored. The aim of this study was to identify and analyze WRKY genes in M.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!