Matrix extracellular phosphoglycoprotein (MEPE) is a SIBLING protein, found in bone and dental tissues. The purpose of this study was to determine whether a 23-amino-acid peptide derived from MEPE (Dentonin or AC-100) could stimulate dental pulp stem cell (DPSC) proliferation and/or differentiation. DPSCs were isolated from erupted human molars, and the mitogenic potential of Dentonin in DPSCs was measured by BrdU immunoassay and cell-cycle gene SuperArray. Differentiation of DPSCs with Dentonin was characterized by Western blot and by osteogenesis gene SuperArray. Dentonin enhanced DPSC proliferation by down-regulating P16, accompanied by up-regulation of ubiquitin protein ligase E3A and human ubiquitin-related protein SUMO-1. Enhanced cell proliferation required intact RGD and SGDG motifs in the peptide. This study shows that Dentonin can promote DPSC proliferation, with a potential role in pulp repair. Further studies are required to determine the usefulness of this material in vivo.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1177/154405910408300612 | DOI Listing |
BMC Mol Cell Biol
January 2025
Department of Biochemistry, University at Buffalo, 3435 Main Street, Buffalo, NY, 14214, USA.
Background: Bioengineering of human teeth for replacement is an appealing regenerative approach in the era of gene therapy. Developmentally regulated transcription factors hold promise in the quest because these transcriptional regulators constitute the gene regulatory networks driving cell fate determination. Atonal homolog 1 (Atoh1) is a transcription factor of the basic helix-loop-helix (bHLH) family essential for neurogenesis in the cerebellum, auditory hair cell differentiation, and intestinal stem cell specification.
View Article and Find Full Text PDFJ Adv Res
January 2025
Center of Stomatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China; School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China; Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan 430022, People's Republic of China. Electronic address:
Introduction: Establishing an optimized regenerative microenvironment for pulp-dentin complex engineering has become increasingly critical. Recently, exosomes have emerged as favorable biomimetic nanotherapeutic tools to simulate the developmental microenvironment and facilitate tissue regeneration.
Objectives: This study aimed to elucidate the multifaceted roles of exosomes from human dental pulp stem cells (DPSCs) that initiated odontogenic differentiation while sustaining mesenchymal stem cell (MSC) characteristics in odontogenesis, angiogenesis, and neurogenesis during pulp-dentin complex regeneration.
PeerJ
December 2024
Department of Restorative Dentistry and Biomaterials Sciences, Harvard School of Dental Medicine, Boston, MA, United States.
Background: Propolis is a natural substance produced by honeybees that has various biological properties including, anti-inflammatory, antioxidant and antimicrobial properties. Although previous studies have evaluated the antimicrobial effects of propolis in dentistry, its effects on dental pulp stem cell (DPSC) viability, migration, and differentiation are yet not well understood. The objective of this study was to investigate the effects of Chinese propolis on viability/proliferation, migration, differentiation and cytokine expression in DPSCs.
View Article and Find Full Text PDFStem Cell Res Ther
November 2024
Restorative Dental Sciences, Endodontics, Faculty of Dentistry, The University of Hong Kong, Hong Kong, SAR, China.
Stem Cell Rev Rep
November 2024
LBN, Univ. Montpellier, Montpellier, France.
Background: Cell-free approaches, utilizing mesenchymal stem cell secretome, have promising prospects in various fields of regenerative medicine. In this study, we examined in vitro and in vivo the potential of dental pulp stem cell-conditioned medium (DPSC-CM) for bone regeneration.
Methods: The secretome of undifferentiated stem cells from dental pulp were collected, and the effects of this DPSC-CM were assessed for osteodifferentiation of osteoblast-like cells (MG-63) and osteoblasts deriving from DPSC.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!