Acid phosphatases from beet root (Beta vulgaris) plasma membranes.

Physiol Plant

Departamento de Biotecnología y Bioquímica, Unidad Irapuato, Centro de Investigación y de Estudios Avanzados del IPN. Apartado Postal 629, 36500 Irapuato Gto, México.

Published: June 2004

Several acid phosphatases (EC 3.1.3.2) were found in beet root (Beta vulgaris L.) plasma membranes. Two of them were partially purified by an extraction of plasma membranes with octylglucoside and successive gel-filtration and anion-exchange chromatographies. With p-nitrophenyl-phosphate (pNPP) as substrate, most of the phosphatase activity was found in a fraction containing an 82-kDa protein. This phosphatase showed an optimum pH of 5.4 and was inhibited by Cu(2+), Zn(2+), molybdate or vanadate. The other phosphatase had a lower specific activity with pNPP, but was able to dephosphorylate phospho-myelin basic protein (phospho-MBP). This phosphatase presented two polypeptides with molecular masses of 36 and 65 kDa and was 83% inhibited by 2 nM okadaic acid, which suggests it is a PP2A protein phosphatase. As the phosphatase activity was high in soluble (non-membrane) fractions, the possibility that phosphatases in plasma membranes were soluble contaminants was assessed. Following the method of Bérczi and Møller (Plant Physiol. 116:1029, 1998), it was found that about 45% of both acid and protein phosphatase activities could be due to soluble enzymes trapped inside membrane vesicles.

Download full-text PDF

Source
http://dx.doi.org/10.1111/j.0031-9317.2004.00331.xDOI Listing

Publication Analysis

Top Keywords

plasma membranes
16
protein phosphatase
12
acid phosphatases
8
beet root
8
root beta
8
beta vulgaris
8
vulgaris plasma
8
phosphatase activity
8
phosphatase
7
acid
4

Similar Publications

MAL2 (myelin and lymphocyte protein 2) and rab17 have been identified as hepatocellular carcinoma tumor suppressors. However, little is known how their functions in hepatic polarized protein sorting/trafficking translates into how they function in the epithelial to mesenchymal transition and/or the mesenchymal to epithelial transition in metastases. To investigate this, we expressed MAL2 and rab17 alone or together in hepatoma-derived Clone 9 cells (that lack endogenous MAL2 and rab17).

View Article and Find Full Text PDF

Inhibitory and Curative Effects and Mode of Action of Hydroxychloroquine on of Tomato.

Phytopathology

January 2025

Guizhou University, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Huaxi District, Guiyang, Guizhou Province of China, Guiyang, China, 550025;

Gray mold is an important disease of crops and is widespread, harmful, difficult to control, and prone to developing fungicide resistance. Screening new fungicides is an important step in controlling this disease. Hydroxychloroquine is an anti-inflammatory and anti-malarial agent, which has shown marked inhibitory activity against many fungi in medicine.

View Article and Find Full Text PDF

To investigate the effect of icariin (ICA) on hepatocellular carcinoma (HCC) and its autophagy/apoptosis mechanism in HCC. The anti-HCC mechanism of ICA was investigated using HCC cells treated with 20 µmol/L ICA. Cell viability and proliferation were assessed using CCK-8 and colony formation assays, respectively, while TUNEL staining evaluated anti-apoptotic effects.

View Article and Find Full Text PDF

Mutations that increase LRRK2 kinase activity have been linked to Parkinson's disease and Crohn's disease. LRRK2 is also activated by lysosome damage. However, the endogenous cellular mechanisms that control LRRK2 kinase activity are not well understood.

View Article and Find Full Text PDF

Modular Engineering of Lysostaphin with Significantly Improved Stability and Bioavailability for Treating MRSA Infections.

ACS Appl Mater Interfaces

January 2025

State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China.

Methicillin-resistant (MRSA) is a refractory pneumonia-causing pathogen due to the antibiotic resistance and the characteristics of persisting inside its host cell. Lysostaphin is a typical bacteriolytic enzyme for degrading bacterial cell walls via hydrolysis of pentaglycine cross-links, showing potential to combat multidrug-resistant bacteria. However, there are still grand challenges for native lysostaphin because of its poor shelf stability and limited bioavailability.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!