This is a test report on the efficiency of a moving-actuator type biventricular assist device (AnyHeart, Seoul National University). From the viewpoint of the various system mechanisms, the device can be subdivided into three separate parts: the motor and its associated controller, the actuator and motor assembly, and the blood sac and its associated components (including valves). The motor was operated under various conditions, including different torque, angular speed, and voltage pulses. The total system efficiency of 8% has been reported before, with subpart efficiencies of 50%, 85%, and 19%, respectively, for the motor and its associated controller, the actuator and motor assembly, and the blood sac and its associated components (including valves), under normal operating conditions (4 L/min pump output, 100 mm Hg aortic pressure [AoP]). This article focuses on the method of analyzing and improving the system efficiency. The applied input voltage under the normal operating conditions of the pump was determined using the analyzed results. Also, a speed profile that takes into consideration the filling state of the blood sac was provided. On the basis of tests performed involving in vitro mock circulation, experimental results are provided to demonstrate the effectiveness of the approach presented in this article.

Download full-text PDF

Source
http://dx.doi.org/10.1111/j.1525-1594.2004.07266.xDOI Listing

Publication Analysis

Top Keywords

system efficiency
12
blood sac
12
efficiency moving-actuator
8
moving-actuator type
8
type biventricular
8
biventricular assist
8
assist device
8
motor associated
8
associated controller
8
controller actuator
8

Similar Publications

One hallmark of cancer is the upregulation and dependency on glucose metabolism to fuel macromolecule biosynthesis and rapid proliferation. Despite significant pre-clinical effort to exploit this pathway, additional mechanistic insights are necessary to prioritize the diversity of metabolic adaptations upon acute loss of glucose metabolism. Here, we investigated a potent small molecule inhibitor to Class I glucose transporters, KL-11743, using glycolytic leukemia cell lines and patient-based model systems.

View Article and Find Full Text PDF

Theory-informed refinement and tailored implementation of a quality improvement program in maternity care to reduce unwarranted clinical variation across a health service network.

BMC Health Serv Res

January 2025

Australian Centre for Health Services Innovation and Centre for Healthcare Transformation, School of Public Health and Social Work, Faculty of Health, Queensland University of Technology, Brisbane, QLD, Australia.

Background: Unwarranted clinical variation presents a major challenge in contemporary healthcare, indicating potential inequalities and inefficiencies, and unrealised potential for better outcomes. Despite an increasing focus on unwarranted clinical variation, and consideration of efforts to address this challenge, evidence-based strategies which achieve this are limited. Audit and feedback of healthcare processes (process auditing) and clinician engagement are important tools which may help to reduce unwarranted clinical variation, however their application in maternity care is yet to be thoroughly explored.

View Article and Find Full Text PDF

Removal of Antibiotics in Breeding Wastewater Tailwater Using Microalgae-Based Process.

Bull Environ Contam Toxicol

January 2025

Key Laboratory of Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing, 400045, China.

Ciprofloxacin (CIP) and oxytetracycline (OTC) are commonly detected antibiotic species in breeding wastewater, and microalgae-based antibiotic treatment technology is an environmentally friendly and cost-effective method for its removal. This study evaluated the effects of CIP and OTC on Scenedesmus sp. in the breeding wastewater tailwater and the removal mechanisms of antibiotics.

View Article and Find Full Text PDF

Multi-objective design of multi-material truss lattices utilizing graph neural networks.

Sci Rep

January 2025

Advanced Manufacturing Lab, ETH Zürich, Leonhardstrasse 21, 8092, Zurich, Switzerland.

The rapid advancements in additive manufacturing (AM) across different scales and material classes have enabled the creation of architected materials with highly tailored properties. Beyond geometric flexibility, multi-material AM further expands design possibilities by combining materials with distinct characteristics. While machine learning has recently shown great potential for the fast inverse design of lattice structures, its application has largely been limited to single-material systems.

View Article and Find Full Text PDF

Regulatory elements controlling gene expression fine-tune bacterial responses to environmental cues, including antimicrobials, to optimize survival. Acinetobacter baumannii, a pathogen notorious for antimicrobial resistance, relies on efficient efflux systems. Though the role of efflux systems in antibiotic expulsion are well recognized, the regulatory mechanisms controlling their expression remain understudied.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!