Searching for bioactive peptides, we analyzed acidic extracts of Phyllomedusa sauvagii skin and found two new proteins, PSKP-1 and PSKP-2, of 6.7 and 6.6 kDa, respectively, which, by sequence homology, belong to the Kazal family of serine protease inhibitors. PSKP-1 and PSKP-2 exhibit the unprecedented feature of having proline at P(1) and P(2) positions. A gene encoding PSKP-1 was synthesized and expressed in Escherichia coli. Recombinant PSKP-1 was purified from inclusion bodies, oxidatively refolded to the native state, and characterized by chemical, hydrodynamic and optical studies. PSKP-1 shows inhibitory activity against a serum prolyl endopeptidase, but is unable to inhibit trypsin, chymotrypsin, V8 protease, or proteinase K. In addition, PSKP-1 can be rendered active against trypsin by active-site site-specific mutagenesis, has bactericidal activity, and induces agglutination of red cells at micromolar concentrations. PSKP-1 might protect P. sauvagii teguments from microbial invasion, by acting as an inhibitor of an as-yet unidentified prolyl endopeptidase or directly as a microbicidal compound.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/j.1432-1033.2004.04127.x | DOI Listing |
Anal Chem
December 2024
Institute of Microbiology of the Czech Academy of Sciences, BioCeV, Videnska 1083, Prague 4 14220, Czechia.
In proteomics, postproline cleaving enzymes (PPCEs), such as prolyl endopeptidase (PEP) and neprosin, complement proteolytic tools because proline is a stop site for many proteases. But while aiming at using PEP in online proteolysis, we found that this enzyme also displayed specificity to reduced cysteine. By LC-MS/MS, we systematically analyzed PEP sources and conditions that could affect this cleavage preference.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
November 2024
Division of Biomedical Sciences, School of Medicine, University of California Riverside, Riverside, CA 92521.
The concept of targeted protein degradation is at the forefront of modern drug discovery, which aims to eliminate disease-causing proteins using specific molecules. In this paper, we explored the idea to design protein degraders based on the section of ligands that cause protein destabilization, hence that facilitate the cellular breakdown of the target. Our studies present covalent agents targeting Pin1, a cis-trans prolyl isomerase that plays a crucial role in tumorigenesis.
View Article and Find Full Text PDFInt J Biol Macromol
December 2024
Beamline Development and Application Section, Bhabha Atomic Research Centre, Mumbai 400085, Maharashtra, India. Electronic address:
BMC Pediatr
October 2024
Department of Cardiology, Beijing Children's Hospital, Capital Medical University, National Centre for Children's Health, Beijing, China.
BACKGROUND X-PROLYL AMINOPEPTIDASE 3: (XPNPEP3) mutations are known to cause nephronophthisis-like nephropathy-1 (NPHPL1), a rare autosomal-recessive kidney disease characterized by progressive kidney failure and cystic kidney disease in childhood. The full phenotypic spectrum associated with mutations in XPNPEP3 is not fully elucidated. CASE PRESENTATION: A 13-year-old Chinese female patient with intellectual disability presented with a 2-year history of convulsions and fatigue, with a recent episode of swelling, breathlessness, and nocturnal dyspnea lasting 10 days.
View Article and Find Full Text PDFMolecules
September 2024
Department of Food Science, National Taiwan Ocean University, Keelung 20224, Taiwan.
This current study aims to analyze the potential bioactivities possessed by the enzymatic hydrolysates of commercial bovine, porcine, and tilapia gelatins using bioinformatics in combination with in vitro and in vivo studies. The hydrolysate with superior inhibition of angiotensin converting enzyme (ACE) activity was used to treat the D-galactose (DG)-induced amnesic mice. In silico digestion of the gelatins led to the identification of peptide sequences with potential antioxidant, ACE-inhibitory, and anti-amnestic properties.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!