The COQ2 gene in Saccharomyces cerevisiae encodes a Coq2 (p-hydroxybenzoate:polyprenyl transferase), which is required in the biosynthetic pathway of CoQ (ubiquinone). This enzyme catalyses the prenylation of p-hydroxybenzoate with an all-trans polyprenyl group. We have isolated cDNA which we believe encodes the human homologue of COQ2 from a human muscle and liver cDNA library. The clone contained an open reading frame of length 1263 bp, which encodes a polypeptide that has sequence homology with the Coq2 homologues in yeast, bacteria and mammals. The human COQ2 gene, when expressed in yeast Coq2 null mutant cells, rescued the growth of this yeast strain in the absence of a non-fermentable carbon source and restored CoQ biosynthesis. However, the rate of CoQ biosynthesis in the rescued cells was lower when compared with that in cells rescued with the yeast COQ2 gene. CoQ formed when cells were incubated with labelled decaprenyl pyrophosphate and nonaprenyl pyrophosphate, showing that the human enzyme is active and that it participates in the biosynthesis of CoQ.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1133808 | PMC |
http://dx.doi.org/10.1042/BJ20040261 | DOI Listing |
Pediatr Nephrol
January 2025
Department of Translational Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea.
Background: Coenzyme Q10 (CoQ10) nephropathy is a well-known cause of hereditary steroid-resistant nephrotic syndrome, primarily impacting podocytes. This study aimed to elucidate variations in individual cell-level gene expression in CoQ10 nephropathy using single-cell transcriptomics.
Methods: We conducted single-cell sequencing of a kidney biopsy specimen from a 5-year-old boy diagnosed with a CoQ10 nephropathy caused by a compound heterozygous COQ2 mutation complicated with immune complex-mediated glomerulonephritis.
Cureus
December 2024
Pediatrics Department, Dr. Sulaiman Al Habib Hospital, Riyadh, SAU.
Coenzyme Q2 (CoQ2) mutations are a group of autosomal recessive mitochondria-linked diseases that result in coenzyme Q10 (CoQ10) deficiency (CoQ10: a cofactor in mitochondrial energy production). Its deficiency leads to multiple systemic clinical presentations; however, isolated steroid-resistant nephrotic syndrome (SRNS) is considerably rare. Multiple genetic mutations have been reported with different ranges of severity and prognosis, with variable responses to CoQ10 supplementation.
View Article and Find Full Text PDFPrenat Diagn
January 2025
Université Paris Cité, Inserm, NeuroDiderot, Paris, France.
Objective: Fetal intracranial hemorrhage (FICH) is a rare and potentially deleterious condition. Fetal alloimmune thrombocytopenia and pathogenic variations in COL4A1/A2 genes are well-recognized causes of FICH. However, pathogenic COL4A1/A2 variations are identified in only 20% of fetuses referred for FICH after excluding other known causes, leaving the majority unexplained and making genetic counseling difficult.
View Article and Find Full Text PDFKidney Int Rep
December 2024
Division of Molecular Medicine, University of São Paulo School of Medicine, São Paulo, Brazil.
Introduction: The profile of genetic and nongenetic factors associated with progression to kidney failure (KF) in steroid-resistant nephrotic syndrome (SRNS) is largely unknown in admixed populations.
Methods: A total of 101 pediatric patients with primary SRNS were genetically assessed targeting Mendelian causes and status with a 62-NS-gene panel or whole exome sequencing, as well as genetic ancestry. Variant pathogenicity was evaluated using the American College Medical of Genetics and Genomics (ACMG) criteria.
Eur J Neurol
December 2024
Department of Neurology, Xuanwu Hospital of Capital Medical University, National Clinical Research Centre for Geriatric Diseases, Beijing, China.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!