Intramolecular C-N bond formation reactions catalyzed by ruthenium porphyrins: amidation of sulfamate esters and aziridination of unsaturated sulfonamides.

J Org Chem

Department of Chemistry and Open Laboratory of Chemical Biology of the Institute of Molecular Technology for Drug Discovery and Synthesis, The University of Hong Kong, Pokfulam Road, Hong Kong.

Published: May 2004

Ruthenium porphyrins [Ru(F(20)-TPP)(CO)] (F(20)-TPP = 5,10,15,20-tetrakis(pentafluorophenyl)porphyrinato dianion) and [Ru(Por*)(CO)] (Por = 5,10,15,20-tetrakis[(1S,4R,5R,8S)-1,2,3,4,5,6,7,8-octahydro-1,4:5,8-dimethanoanthracen-9-yl]porphyrinato dianion) catalyzed intramolecular amidation of sulfamate esters p-X-C(6)H(4)(CH(2))(2)OSO(2)NH(2) (X = Cl, Me, MeO), XC(6)H(4)(CH(2))(3)OSO(2)NH(2) (X = p-F, p-MeO, m-MeO), and Ar(CH(2))(2)OSO(2)NH(2) (Ar = naphthalen-1-yl, naphthalen-2-yl) with PhI(OAc)(2) to afford the corresponding cyclic sulfamidates in up to 89% yield with up to 100% substrate conversion; up to 88% ee was attained in the asymmetric intramolecular amidation catalyzed by [Ru(Por)(CO)]. Reaction of [Ru(F(20)-TPP)(CO)] with PhI[double bond]NSO(2)OCH(2)CCl(3) (prepared by treating the sulfamate ester Cl(3)CCH(2)OSO(2)NH(2) with PhI(OAc)(2)) afforded a bis(imido)ruthenium(VI) porphyrin, [Ru(VI)(F(20)-TPP)(NSO(2)OCH(2)CCl(3))(2)], in 60% yield. A mechanism involving reactive imido ruthenium porphyrin intermediate was proposed for the ruthenium porphyrin-catalyzed intramolecular amidation of sulfamate esters. Complex [Ru(F(20)-TPP)(CO)] is an active catalyst for intramolecular aziridination of unsaturated sulfonamides with PhI(OAc)(2), producing corresponding bicyclic aziridines in up to 87% yield with up to 100% substrate conversion and high turnover (up to 2014).

Download full-text PDF

Source
http://dx.doi.org/10.1021/jo0358877DOI Listing

Publication Analysis

Top Keywords

amidation sulfamate
12
sulfamate esters
12
intramolecular amidation
12
ruthenium porphyrins
8
aziridination unsaturated
8
unsaturated sulfonamides
8
yield 100%
8
100% substrate
8
substrate conversion
8
intramolecular
5

Similar Publications

Fun With Unusual Functional Groups: Sulfamates, Phosphoramidates, and Di-tert-butyl Silanols.

European J Org Chem

March 2024

Department of Medicinal Chemistry, University of Kansas, Lawrence, Kansas 66047, USA.

Compared to ubiquitous functional groups such as alcohols, carboxylic acids, amines, and amides, which serve as central "actors" in most organic reactions, sulfamates, phosphoramidates, and di--butyl silanols have historically been viewed as "extras". Largely considered functional group curiosities rather than launch-points of vital reactivity, the chemistry of these moieties is under-developed. Our research program has uncovered new facets of reactivity of each of these functional groups, and we are optimistic that the chemistry of these fascinating molecules can be developed into truly general transformations, useful for chemists across multiple disciplines.

View Article and Find Full Text PDF

A small library of 79 substituted phenylsulfonamidoalkyl sulfamates, -, was synthesized starting from arylsulfonyl chlorides and amino alcohols with different numbers of methylene groups between the hydroxyl and amino moieties yielding intermediates -, followed by the reaction of the latter with sulfamoyl chloride. All compounds were screened for their inhibitory activity on bovine carbonic anhydrase II. Compounds - showed no inhibition of the enzyme, in contrast to sulfamates -.

View Article and Find Full Text PDF

The antibiotic sulfamethoxazole (SMX) undergoes direct phototransformation by sunlight, constituting a notable dissipation process in the environment. SMX exists in both neutral and anionic forms, depending on the pH conditions. To discern the direct photodegradation of SMX at various pH levels and differentiate it from other transformation processes, we conducted phototransformation of SMX under simulated sunlight at pH 7 and 3, employing both transformation product (TP) and compound-specific stable isotope analyses.

View Article and Find Full Text PDF

Oligonucleotides hold great promise as therapeutic agents but poor bioavailability limits their utility. Hence, new analogues with improved cell uptake are urgently needed. Here, we report the synthesis and physical study of reduced-charge oligonucleotides containing artificial LNA-sulfamate and sulfamide linkages combined with 2'-O-methyl sugars and phosphorothioate backbones.

View Article and Find Full Text PDF

We present the first examples of intramolecular aza-Michael cyclizations of sulfamates and sulfamides onto pendant α,β-unsaturated esters, thioesters, amides, and nitriles. Stirring the substrate with catalytic quantities of the appropriate base delivers the product in good yield and excellent diastereoselectivity. The reactions are operationally simple, can be performed open to air, and are tolerant of a variety of important functional groups.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!