Neutron dose from prostheses material during radiotherapy with protons and photons.

Phys Med Biol

Division of Medical Physics, Department of Radiation Oncology and Nuclear Medicine, City Hospital Triemli, CH-8063 Zürich, Switzerland.

Published: May 2004

The purpose of this investigation is to measure the impact of Ti-alloy-prostheses on the neutron dose during proton and photon radiotherapy. Such unwanted neutron dose to the patient should be kept as low as possible (ALARA principle), as such additional dose can create secondary malignancies. For this purpose we performed neutron dose measurements using etch track detectors under the same conditions on a proton and a photon beam line used for radiotherapy. We found no influence of the prostheses material on the neutron dose both for proton and photon treatment.

Download full-text PDF

Source
http://dx.doi.org/10.1088/0031-9155/49/9/n01DOI Listing

Publication Analysis

Top Keywords

neutron dose
20
proton photon
12
prostheses material
8
dose proton
8
neutron
5
dose
5
dose prostheses
4
material radiotherapy
4
radiotherapy protons
4
protons photons
4

Similar Publications

The paper presents the variations of space radiation (primary and secondary galactic cosmic rays (GCR) absorbed dose rate in silicon and flux) measured during the first-ever commercial suborbital flight of the Virgin Galactic (VG) SpaceShipTwo Unity on 29 June 2023. A Portable Dosimeter-Spectrometer Liulin-CNR-VG is used. It is developed in the Space Research and Technology Institute, Bulgarian Academy of Sciences (SRTI-BAS) under a scientific contract with National Research Council of Italy (CNR), Italy.

View Article and Find Full Text PDF

Heterogeneous head phantom for validating treatment planning system in boron neutron capture therapy.

Appl Radiat Isot

January 2025

Institute of Nuclear Engineering and Science, National Tsing Hua University, 101, Sec. 2, Kuang-Fu Road, Hsinchu, 30013, Taiwan; Nuclear Science and Technology Development Center, National Tsing Hua University, 101, Sec. 2, Kuang-Fu Road, Hsinchu, 30013, Taiwan. Electronic address:

In clinical boron neutron capture therapy (BNCT), the distribution of dose to a heterogeneous medium that is predicted by a treatment planning system (TPS) should be experimentally validated. A head phantom specifically developed for this purpose is described and demonstrated herein. The cylindrical phantom exhibits distinct regions made from four materials (polymethyl methacrylate, calcium phosphate, air, and boric acid) to approximate a head structure with explicitly defined skin, skull, and brain tissue with a cavity and tumor within.

View Article and Find Full Text PDF

Safe storage of fresh and irradiated fuel is ensured by solving the problem of photon emission protection. The neutron component is usually not taken into account due to its low intensity. However, for the new VVER-1200 fuel, the neutron component consideration is a mandatory procedure for radiation safety.

View Article and Find Full Text PDF

Transcriptome analysis of human oral squamous cancer SAS cells as an early response after boron neutron capture therapy.

Appl Radiat Isot

January 2025

Department of Molecular and Genomic Biomedicine, Nagasaki University Graduate School of Biomedical Sciences, 852-8523, Nagasaki, Japan; Central Radioisotope Division, National Cancer Center Research Institute, 104-0045, Tokyo, Japan; Division of BNCT, EPOC, National Cancer Center, Tokyo, Japan; Division of Chemotherapy and Clinical Cancer Research, National Cancer Center Research Institute, 104-0045, Tokyo, Japan. Electronic address:

Boron neutron capture therapy (BNCT) is based on nuclear reactions between thermal neutron and boron-10 preferentially distributed in the cancer cells. B-boronophenylalanine (BPA) is the approved drug for treatment of oral cancers for BNCT. However, the predictive biomarkers to evaluate therapeutic efficacy and side-effects have not been clarified yet.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!