Iontophoresis currents are used in the transcutaneous delivery of vasoactive substances for noninvasive assessment of skin vascular properties. The blood flow rate can be recorded by laser Doppler flowmetry (LDF), its average value and the amplitudes of its oscillatory components being used to evaluate the effect of the drugs. Because non-drug-specific, current-induced, vasodilation could confound the interpretation of the response, we have investigated the effect of currents of both polarities on the spectral components of the LDF signal in the absence of vasoactive substances. It was recorded for healthy volunteers with both high conductance (5 mol/l NaCl) and low conductance (deionized water) electrolytes. The oscillatory components were analysed by wavelet transform within 0.0095-1.6 Hz, divided into five sub-intervals. Only cathodal iontophoresis with deionized water increased the oscillatory energy and amplitude. It did so at all frequencies, but none of the sub-intervals associated with vasodilation (0.0095-0.145 Hz) was selectively affected compared to the others.

Download full-text PDF

Source
http://dx.doi.org/10.1088/0031-9155/49/8/n03DOI Listing

Publication Analysis

Top Keywords

oscillatory components
12
blood flow
8
vasoactive substances
8
deionized water
8
wavelet analysis
4
analysis blood
4
flow dynamics
4
dynamics individual
4
oscillatory
4
individual oscillatory
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!