Nitrogen dioxide is a ubiquitous pollutant in urban areas. Indoor NO2 concentrations are influenced by penetration of outdoor concentrations and by indoor sources. The objectives of this study were to evaluate personal exposure to NO2, taking into account human time-activity patterns in four Mexican cities. Passive filter badges were used for indoor, outdoor, and personal NO2 measurements over 48 hr and indoor workplace measurements over 16 hr. Volunteers completed a questionnaire on exposure factors and a time-activity diary during the sample period. An unpaired t test, an analysis of variance (ANOVA), and a linear regression were performed to compare differences among cities and mean personal NO2 concentrations involving housing characteristics, as well as to determine which variables predicted the personal NO2 concentration. Sampling periods were in April, May, and June 1996 in Mexico City, Guadalajara, Cuernavaca, and Monterrey. All 122 volunteers in the study were working adults, with a mean age of 34 (SD +/- 7.38); 64% were female, and the majority worked in public offices and universities. The highest NO2 concentrations were found in Mexico City (36 ppb for outdoor, 57 ppb for indoor, and 39 ppb for personal concentration) and the lowest in Monterrey (19 ppb for outdoor, 24 ppb for indoor, and 24 ppb for personal concentration). Significant differences in NO2 concentrations were found among the cities in different microenvironments. During the sampling period, volunteers spent 85% of their time indoors. The highest personal NO2 concentration was found when volunteers kept their windows closed (p = 0.03). In the regression model adjusted by city and gender, the best predictors of personal NO2 concentration were outdoor levels and time spent outdoors (R2 = 0.68). These findings suggest that outdoor NO2 concentrations were an important influence on the personal exposure to NO2, due to the specific characteristics and personal behavior of the people in these Mexican cities.

Download full-text PDF

Source
http://dx.doi.org/10.1080/10473289.2002.10470761DOI Listing

Publication Analysis

Top Keywords

no2 concentrations
20
personal no2
20
personal exposure
12
mexican cities
12
no2 concentration
12
no2
11
personal
10
nitrogen dioxide
8
exposure no2
8
mexico city
8

Similar Publications

Chemical nanosensors based on nanoparticles of tin dioxide and graphene-decorated tin dioxide were developed and characterized to detect low NO concentrations. Sensitive layers were prepared by the drop casting method. SEM/EDX analyses have been used to investigate the surface morphology and the elemental composition of the sensors.

View Article and Find Full Text PDF

There are three components to every environmental protection system: monitoring, estimation, and control. One of the main toxic gases with considerable effects on human health is NO, which is released into the atmosphere by industrial activities and the transportation network. In the present research, a NO sensor is designed based on FeO piperidine-4-sulfonic acid grafted onto a reduced graphene oxide FeO@rGO-N-(piperidine-4-SOH) nanocomposite, due to the highly efficient detection of pollution in the air.

View Article and Find Full Text PDF

Rationale: Data are required for SIFT-MS analysis of perfluoroalkyl and polyfluoroalkyl substances (PFAS), which are persistent in the environment and cause adverse health effects. Specifically, the rate coefficients and product ion branching ratios of the reactions of HO, NO, O •, O•, OH, O •, NO and NO with PFAS vapours are needed.

Methods: The dual polarity SIFT-MS instrument (Voice200) was used to generate these eight reagent ions and inject them into the flow tube with N carrier gas at a temperature of 393 K.

View Article and Find Full Text PDF

The study delved into an extensive assessment of outdoor air pollutant levels, focusing specifically on PM, SO, NO, and CO, across the Mashhad metropolis from 2017 to 2021. In tandem, it explored their intricate correlations with meteorological conditions and the consequent health risks posed. Employing EPA health risk assessment methods, the research delved into the implications of pollutant exposure on human health.

View Article and Find Full Text PDF

High-level nitrogen removal achieved by Feammox-based autotrophic nitrogen conversion.

Water Res X

May 2025

Water Research Centre, School of Civil and Environmental Engineering, University of New South Wales, Sydney, New South Wales, 2052, Australia.

Anaerobic ammonium oxidation coupled with Fe(III) reduction (Feammox) is an essential process in the geochemical iron and nitrogen cycling. This study explores Feammox-based nitrogen removal in a continuous laboratory up-flow bioreactor stimulated by intermittently adding 5 mM Fe(OH) at intervals of approximately two months. The feed was synthetic wastewater with a relatively low ammonium concentration (∼100 mg N/L), yet without organic carbon in order to test its autotrophic nitrogen removal performance.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!