Platelet activating factor (PAF) is known as an autocrine growth/survival factor in mammalian preimplantation embryos. This study investigated the expression of porcine PAF receptor (PAFr) mRNA and its role in porcine in vitro fertilized (IVF) or somatic cell nuclear transfer (SCNT) embryo development. The expression of PAFr mRNA in IVF or SCNT blastocysts was shown by reverse transcription-polymerase chain reaction (RT-PCR) and Southern blot analysis. Semiquantitative RT-PCR and Southern blot analysis demonstrated that PAFr mRNA was expressed during preimplantation embryo development, it was highly expressed through the 2-cell to 8-cell embryo stage, and it decreased at the morula stage. PAFr mRNA expression was detected steadily in IVF embryos, whereas it was varied at the 2-cell, 4-cell, and blastocyst stages in SCNT embryos. To determine the role of PAF in IVF and SCNT embryo development, embryos were cultured in North Carolina State University (NCSU)-23 medium supplemented with different concentrations of PAF (0, 0.037, 0.37, 3.72, or 37.2 nM). The PAF supplement significantly increased the rate of blastocyst formation in SCNT embryos, but not in IVF embryos. The PAF supplement for the entire 168 h of culture showed significantly higher blastocyst formation in SCNT embryos. Upregulation of PAFr mRNA by PAF in SCNT embryos indicated that the embryotrophic effect of PAF was mediated through its functional receptors in SCNT embryos. In conclusion, the present study demonstrated that PAFr mRNA was expressed in porcine IVF and SCNT embryos, and that PAF supplement improved the developmental competence of SCNT embryos through its specific receptors.

Download full-text PDF

Source
http://dx.doi.org/10.1095/biolreprod.103.026138DOI Listing

Publication Analysis

Top Keywords

scnt embryos
28
pafr mrna
24
embryo development
16
ivf scnt
12
paf supplement
12
embryos
11
scnt
10
paf
9
platelet activating
8
activating factor
8

Similar Publications

Generation of a genetically engineered porcine melanoma model featuring oncogenic control through conditional Cre recombination.

Sci Rep

January 2025

Laboratory of Veterinary Embryology and Biotechnology (VETEMBIO), Veterinary Medical Center and College of Veterinary Medicine, Chungbuk National University, Cheongju, Republic of Korea.

Article Synopsis
  • Melanoma is a severe skin cancer that starts from melanocytes, and existing rodent models have limitations in mirroring human conditions.
  • Researchers have created a transgenic pig model that mimics human melanoma using somatic cell nuclear transfer (SCNT), enabling better study of the disease.
  • This new model allows for the investigation of melanoma development and response to treatments, providing a significant resource for advancing cancer research and drug testing.
View Article and Find Full Text PDF

Advancing nuclear transfer cloning in zebrafish (Danio rerio) into a translational pathway using interdisciplinary tools.

PLoS One

January 2025

Aquatic Germplasm and Genetic Resources Center, School of Renewable Natural Resources, Louisiana State University Agricultural Center, Baton Rouge, LA, United States of America.

The Zebrafish International Resource Center (ZIRC) is an NIH-funded national stock center and germplasm repository that maintains and distributes genetically modified and wild-type zebrafish (Danio rerio) lines to the biomedical research community. The ZIRC and its community would benefit from incorporating somatic cell nuclear transfer (SCNT) cloning which would allow the preservation of diploid genomes. The goal of this study was to advance a zebrafish SCNT cloning protocol into a reproducible community-level pathway by use of process mapping and simulation modeling approaches to address training requirements, process constraints, and quality management gaps.

View Article and Find Full Text PDF

Effect of extracellular vesicles derived from oviductal and uterine fluid on the development of porcine preimplantation embryos.

Theriogenology

March 2025

College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, 08826, Republic of Korea. Electronic address:

To improve the efficiency of in-vitro-produced (IVP) porcine embryos, we focused on the events that usually occur during in-vivo embryonic transit from the oviduct to the uterus. Extracellular vesicles (EVs) are released by different mammalian cells and are imperative for intercellular communication and reflect the cell's physiological state. Based on these characteristics, EVs were isolated from oviductal and uterine fluid to imitate the in vivo environment and improve the efficiency of IVP embryos.

View Article and Find Full Text PDF

Developmental abnormalities are more common in somatic cell nuclear transfer (SCNT) embryos due to epigenetic barriers that occur during the maternal-to-zygotic transition (MZT). N6-methyladenosine (m6A) is an RNA epigenetic modification that plays a significant role in numerous biological processes. However, the relationship between m6A and SCNT embryonic development is largely unexplored.

View Article and Find Full Text PDF

Future of reproductive biotechnologies in water buffalo in Southeast Asian countries.

Theriogenology

February 2025

Embryo Technology and Stem Cell Research Center, School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima, 30000, Thailand. Electronic address:

The future of reproductive biotechnologies in water buffalo in Southeast Asian countries holds significant promise for enhancing genetic quality and productivity. Fixed-time artificial insemination remains the commonly used technology, with advances in assisted reproductive technologies (ART) such as in vitro embryo production (IVEP), embryo transfer (ET), and the use of sex-sorted sperm increasingly adopted to improve breeding efficiency. These technologies overcome traditional breeding limitations, such as low reproductive rates, genetic diversity constraints, and the production of sex-predetermined offspring.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!