Anti-MUC1 single-chain Fv (scFv) fragments generated from the humanised antibody huHMFG1 had adequate antigen-binding properties but very poor stability irrespective of the applied linker or domain orientation. Mutagenesis of heavy-chain framework residue V(H)-71, previously described as a key residue for maintaining the CDR-H2 main-chain conformation and thus important for antigen binding, markedly stabilised the scFv while having only a minor effect on the binding affinity of the molecule. Because of its improved stability, the engineered fragment exhibited immunoreactivity with tumour cells even after 7 days of incubation in human serum at 37 degrees C. It also showed, in contrast to the wild-type scFv, a concentration-dependent binding to the target antigen when displayed on phage. When fusing the scFv to the recombinant ribonuclease rapLRI, only the fusion protein generated with the stable mutant scFv was able to kill MUC1(+) tumour cells with an IC(50) of 80 nM. We expect this novel immunoenzyme to become a promising tool for the treatment of MUC1(+) malignancies.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2409732PMC
http://dx.doi.org/10.1038/sj.bjc.6601759DOI Listing

Publication Analysis

Top Keywords

framework residue
8
residue vh-71
8
tumour cells
8
scfv
6
impact antibody
4
antibody framework
4
vh-71 stability
4
stability humanised
4
humanised anti-muc1
4
anti-muc1 scfv
4

Similar Publications

MMFuncPhos: A Multi-Modal Learning Framework for Identifying Functional Phosphorylation Sites and Their Regulatory Types.

Adv Sci (Weinh)

January 2025

Center for Quantitative Biology, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, China.

Protein phosphorylation plays a crucial role in regulating a wide range of biological processes, and its dysregulation is strongly linked to various diseases. While many phosphorylation sites have been identified so far, their functionality and regulatory effects are largely unknown. Here, a deep learning model MMFuncPhos, based on a multi-modal deep learning framework, is developed to predict functional phosphorylation sites.

View Article and Find Full Text PDF

Cryo-EM structure of an activated GPR4-Gs signaling complex.

Nat Commun

January 2025

Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China.

Article Synopsis
  • G protein-coupled receptor 4 (GPR4) is part of a group called proton-sensing GPCRs that respond to pH changes and regulate various physiological functions, with its overactivation noted in acidic tumor environments.
  • Researchers used cryo-electron microscopy to determine the 3D structures of zebrafish GPR4 at different pH levels, revealing important histidine and acidic residues that affect its proton-sensing ability, alongside key triad residues.
  • The study also identified a cluster of aromatic residues in GPR4's orthosteric pocket that may play a crucial role in transferring signals to the inside of the cell, laying the groundwork for further research on psGPCRs.
View Article and Find Full Text PDF

This scoping review aims to understand the cell-based meat production process, including the regulations, potential hazards, and critical points of this production. This review includes studies on cultured meat production processes, health hazards, and regulatory guidelines, excluding those without hazard analysis, incomplete texts, or studies published before 2013. The search was performed in eight electronic databases (MEDLINE, Web of Science, Embase, Cochrane Library, Scopus, LILACS, and Google Scholar) using MeSH terms and adaptations for each database.

View Article and Find Full Text PDF

Development of a Fire-Retardant and Sound-Insulating Composite Functional Sealant.

Materials (Basel)

December 2024

School of Materials Science and Engineering, Hainan University, Haikou 570228, China.

The use of traditional sealing materials in buildings poses a significant risk of fire and noise pollution. To address these issues, we propose a novel composite functional sealant designed to enhance fire safety and sound insulation. The sealant incorporates a unique four-component filler system consisting of carbon nanotubes (CNTs) decorated with layered double hydroxides (LDHs), ammonium dihydrogen phosphate (ADP), and artificial marble waste powder (AMWP), namely CLAA.

View Article and Find Full Text PDF

Dimer Is Not Double: The Unexpected Behavior of Two-Floor Peptide Nanosponge.

Molecules

December 2024

Department of Chemical Science and Technologies, University of Rome "Tor Vergata", Via della Ricerca Scientifica, 00133 Rome, Italy.

Using the framework of an investigation of the stimuli-responsive behavior of peptide assembly on a solid surface, this study on the behavior of a chemisorbed peptide on a gold surface was performed. The studied peptide is a dimeric form of the antimicrobial peptide Trichogin GAIV, which was also modified by substituting the glycine with lysine residues, while the N-terminus octanoyl group was replaced by a lipoic one that was able to bind to the gold surface. In this way, a chemically linked peptide assembly that is pH-responsive was obtained because of the protonation/deprotonation of the sidechains of the Lys residues.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!