The epigenetic control of gene transcription in cancer has been the theme of many recent studies and therapeutic approaches. Carcinogenesis is frequently associated with hypermethylation and consequent down-regulation of genes that prevent cancer, e.g., those that control cell proliferation and apoptosis. We used the demethylating drug zebularine to induce changes in DNA methylation, then examined patterns of gene expression using cDNA array analysis and Restriction Landmark Genomic Scanning followed by RNase protection assay and reverse transcription-PCR to confirm the results. Microarray studies revealed that many genes were epigenetically regulated by methylation. We concluded that methylation decreased the expression of, or silenced, several genes, contributing to the growth and survival of multiple myeloma cells. For example, a number of genes (BAD, BAK, BIK, and BAX) involved in apoptosis were found to be suppressed by methylation. Sequenced methylation-regulated DNA fragments identified by Restriction Landmark Genomic Scanning were found to contain CpG islands, and some corresponded to promoters of genes that were regulated by methylation. We also observed that after the removal of the demethylating drug, the addition of interleukin 6 restored CpG methylation and re-established previously silenced gene patterns, thus implicating a novel role of interleukin 6 in processes regulating epigenetic gene repression and carcinogenesis.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1158/0008-5472.CAN-03-3970 | DOI Listing |
J Clin Invest
January 2025
Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden.
Ischemic stroke is a major cause of adult disability. Early treatment with thrombolytics and/or thrombectomy can significantly improve outcomes; however, following these acute interventions, treatment is limited to rehabilitation therapies. Thus, the identification of therapeutic strategies that can help restore brain function in the post-acute phase remains a major challenge.
View Article and Find Full Text PDFJ Am Chem Soc
January 2025
Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States.
Lysine demethylases (KDMs) catalyze the oxidative removal of the methyl group from histones using earth-abundant iron and the metabolite 2-oxoglutarate (2OG). KDMs have emerged as master regulators of eukaryotic gene expression and are novel drug targets; small-molecule inhibitors of KDMs are in the clinical pipeline for the treatment of human cancer. Yet, mechanistic insights into the functional heterogeneity of human KDMs are limited, necessitating the development of chemical probes for precision targeting.
View Article and Find Full Text PDFGM Crops Food
December 2025
School of Life Science, Henan University, Kaifeng, Henan, People's Republic of China.
Malic acid markedly affects watermelon flavor. Reducing the malic acid content can significantly increase the sweetness of watermelon. An effective solution strategy is to reduce watermelon malic acid content through molecular breeding technology.
View Article and Find Full Text PDFCancer Immunol Res
January 2025
University of Chicago, Chicago, IL, United States.
Based on the notion that hypomorphic germline genetic variants are linked to autoimmune diseases, we reasoned that novel targets for cancer immunotherapy might be identified through germline variants associated with greater T-cell infiltration into tumors. Here, we report that while investigating germline polymorphisms associated with a tumor immune gene signature, we identified PKCδ as a candidate. Genetic deletion of PKCδ in mice resulted in improved endogenous antitumor immunity and increased efficacy of anti-PD-L1.
View Article and Find Full Text PDFDiabetes
January 2025
Department of Biology & Institute of Biochemistry, Carleton University, Ottawa, ON, Canada.
Cancer survivors have an increased risk of developing Type 2 diabetes compared to the general population. Patients treated with cisplatin, a common chemotherapeutic agent, are more likely to develop metabolic syndrome and Type 2 diabetes than age- and sex-matched controls. Surprisingly, the impact of cisplatin on pancreatic islets has not been reported.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!