Some years ago we showed that the Pasteurella multocida toxin (PMT) is a potent mitogen for cells in culture. It is an intracellularly acting toxin that stimulates several signal transduction pathways. The heterotrimeric G-protein, Gq, is stimulated, which in turn causes activation of protein kinase C and an increase in inositol trisphosphates. The Rho GTPase is also activated, leading via the Rho kinase, to activation of the focal adhesion kinase and to cytoskeletal rearrangements. Analysis of the PMT sequence suggested the presence of three domains that encode receptor binding, translocation and catalytic domains. The location of all three domains has been confirmed directly. Competitive binding assays confirmed that the N-terminus of PMT encoded the receptor-binding domain, while cytoplasmic microinjection of expressed PMT fragments identified the location of the C-terminal catalytic domain. Recently, we have demonstrated the presence of key amino acids that affect membrane insertion within the putative transmembrane domain. Several lines of evidence suggest that PMT activates Galphaq, and that this is one potential molecular target for the toxin. Galphaq is known to be tyrosine phosphorylated when activated normally via a G-protein-coupled receptor (GPCR), and it has been suggested that this is an essential part of the activation process. We have shown that PMT induces Galphaq tyrosine phosphorylation, but that this is not essential for activation of the G-protein. Furthermore, a totally inactive mutant of PMT stimulates Galpha phosphorylation without leading to its activation. Phosphorylation of Galphaq triggered by the inactive mutant potentiates activation of Gq via a GPCR, demonstrating that phosphorylation of Gq cannot lead to receptor uncoupling. Natural or experimental infection of animals with toxigenic P. multocida, or injection with purified recombinant PMT causes loss of nasal turbinate bone. The effects on bone have been analysed in vitro using cultures of osteoblasts--cells that lay down bone. PMT blocks the formation of mature calcified bone nodules and the expression of differentiation markers such as CBFA-1, alkaline phosphatase and osteocalcin. These effects can be partially prevented by inhibitors of Rho or Rho kinase function, implicating this pathway in osteoblast differentiation. Indeed, inhibitors of Rho stimulate the formation of bone nodules in vitro. In summary, PMT is a novel toxin that acts via signalling pathways to promote proliferation in many cells, while specifically inhibiting differentiation in osteoblast cells.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1078/1438-4221-00287 | DOI Listing |
Chem Biomed Imaging
December 2024
Department of Chemistry "G.Ciamician", University of Bologna, UE4, Via. P. Gobetti 85, 40129 Bologna, Italy.
Electrochemiluminescence (ECL) is nowadays a powerful technique widely used in biosensing and imaging, offering high sensitivity and specificity for detecting and mapping biomolecules. Screen-printed electrodes (SPEs) offer a versatile and cost-effective platform for ECL applications due to their ease of fabrication, disposability, and suitability for large-scale production. This research introduces a novel method for improving the ECL characteristics of screen-printed carbon electrodes (SPCEs) through the application of CO laser treatment following fabrication.
View Article and Find Full Text PDFOxf Med Case Reports
December 2024
Department of Chemical Pathology & Metabolic Diseases, University Hospitals of Leicester NHS Trust, Groby Road, Leicester LE39QP, United Kingdom.
Tumour-induced osteomalacia (TIO), also known as oncogenic osteomalacia, is a rare paraneoplastic syndrome mediated by the overproduction of phosphaturic hormone fibroblast growth factor 23. TIO is most commonly caused by mesenchymal tumours (PMTs), which are typically small, slow-growing and often undetectable on physical examination and conventional imaging techniques. Patients with TIO typically undergo a protracted period of diagnostic workup and medical treatment due to presentation with nonspecific symptoms and difficulty in localising the culprit tumour.
View Article and Find Full Text PDFJ Hazard Mater
December 2024
ONHEALTH, IDAEA-CSIC, Jordi Girona 18-26, Barcelona 08034, Spain. Electronic address:
Urban stormwater and rainwater in water-stressed cities serve as critical vectors for the transport and dispersion of pollutants, including very mobile compounds These pollutants, which can be influenced by factors such as land use, rainfall intensity, and urban infrastructure, pose significant risks to both human and environmental health. Although several priority pollutants have traditionally been detected in urban stormwater, little is known about the presence of very mobile compounds that may threaten urban drinking water supplies and pose environmental risks to aquatic species. In this study, 131 urban rain and stormwater samples were collected from three districts of Barcelona (Spain) and analysed for 26 very mobile pollutants that are often overlooked in conventional monitoring efforts.
View Article and Find Full Text PDFAdv Funct Mater
October 2024
Department of Chemical and Biomolecular Engineering, University of California, Berkeley, CA 94720, USA.
Traditional deep fluorescence imaging has primarily focused on red-shifting imaging wavelengths into the near-infrared (NIR) windows or implementation of multi-photon excitation approaches. Here, we combine the advantages of NIR and multiphoton imaging by developing a dual-infrared two-photon microscope to enable high-resolution deep imaging in biological tissues. We first computationally identify that photon absorption, as opposed to scattering, is the primary contributor to signal attenuation.
View Article and Find Full Text PDFFront Mol Biosci
December 2024
Centre for Molecular Medicine and Biobanking, University of Malta, Msida, Malta.
Cancer treatments have continued to improve tremendously over the past decade, but therapy resistance is still a common, major factor encountered by patients diagnosed with cancer. Chemoresistance arises due to various circumstances and among these causes, increasing evidence has shown that enzymes referred to as protein methyltransferases (PMTs) play a significant role in the development of chemoresistance in various cancers. These enzymes are responsible for the methylation of different amino acids, particularly lysine and arginine, via protein lysine methyltransferases (PKMTs) and protein arginine methyltransferases (PRMTs), respectively.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!