With the advent of the genomic era, identification of bacterial factors involved in virulence is a different challenge. Given the vast amount of information available on toxins, in terms of sequence and 3D structure, and thanks to the growing number of sequenced bacterial genomes, it is possible to proceed by homology criteria to predict novel toxins in different microorganisms. ADP-ribosyltransferases constitute a class of functionally conserved enzymes, which display toxic activity in a variety of bacterial pathogens. Since these proteins play a key role in pathogenesis, they have been extensively characterized and successfully used as vaccine components and mucosal adjuvants. Therefore, the application of in silico analyses to identify novel members of this class of enzymes represents an important challenge in the genomic era. To address this subject, different groups have recently pursued homology-based procedures to screen bacterial genomes for novel, yet undiscovered ADP-ribosyltransferases (ADPRTs) and have identified more than twenty novel ADPRTs in Gram-positive and Gram-negative bacteria. We have developed a novel pattern-based computational approach, which, flanked by secondary structure prediction tools, has allowed the identification of previously unrecognised putative ADPRTs. One of them, identified in Neisseria meningitidis has been extensively characterized and shown to possess the predicted enzymatic activity, suggesting a possible role of this protein in the virulence of Meningococcus.

Download full-text PDF

Source
http://dx.doi.org/10.1078/1438-4221-00296DOI Listing

Publication Analysis

Top Keywords

genomic era
8
bacterial genomes
8
extensively characterized
8
adprts identified
8
novel
6
bacterial
5
silico identification
4
identification novel
4
novel bacterial
4
bacterial adp-ribosyltransferases
4

Similar Publications

Using Quantitative Trait Locus Mapping and Genomic Resources to Improve Breeding Precision in Peaches: Current Insights and Future Prospects.

Plants (Basel)

January 2025

The Key Laboratory of the Gene Resources Evaluation and Utilization of Horticultural Crop [Fruit Tree], Ministry of Agriculture, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China.

Modern breeding technologies and the development of quantitative trait locus (QTL) mapping have brought about a new era in peach breeding. This study examines the complex genetic structure that underlies the morphology of peach fruits, paying special attention to the interaction between genome editing, genomic selection, and marker-assisted selection. Breeders now have access to precise tools that enhance crop resilience, productivity, and quality, facilitated by QTL mapping, which has significantly advanced our understanding of the genetic determinants underlying essential traits such as fruit shape, size, and firmness.

View Article and Find Full Text PDF

Most rare diseases (RDs) encompass a diverse group of inherited disorders that affect millions of people worldwide. A significant proportion of these diseases are driven by functional haploinsufficiency, which is caused by pathogenic genetic variants. Currently, most treatments for RDs are limited to symptom management, emphasizing the need for therapies that directly address genetic deficiencies.

View Article and Find Full Text PDF

Clinical T3 (cT3) breast cancer (BC) presents a challenge for achieving cosmetically acceptable breast conservation, and neoadjuvant chemotherapy (NAC) is commonly used for cytoreduction in these high-risk cancers. MammaPrint risk-of-recurrence and BluePrint molecular subtyping genomic signatures have demonstrated high accuracy in predicting chemotherapy benefits. Here, we examined the utility of MammaPrint/BluePrint for predicting pathological Complete Response (pCR) rates to NAC among 404 patients diagnosed with cT3 early-stage BC.

View Article and Find Full Text PDF

Overview and Prospects of DNA Sequence Visualization.

Int J Mol Sci

January 2025

School of Mathematics and Computer Science, Gannan Normal University, Ganzhou 341000, China.

Due to advances in big data technology, deep learning, and knowledge engineering, biological sequence visualization has been extensively explored. In the post-genome era, biological sequence visualization enables the visual representation of both structured and unstructured biological sequence data. However, a universal visualization method for all types of sequences has not been reported.

View Article and Find Full Text PDF

Fecal microbiota transplantation: transitioning from chaos and controversial realm to scientific precision era.

Sci Bull (Beijing)

January 2025

Tenth People's Hospital of Tongji University, Shanghai 200072, China; Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou 215000, China. Electronic address:

With the popularization of modern lifestyles, the spectrum of intestinal diseases has become increasingly diverse, presenting significant challenges in its management. Traditional pharmaceutical interventions have struggled to keep pace with these changes, leaving many patients refractory to conventional pharmaceutical treatments. Fecal microbiota transplantation (FMT) has emerged as a promising therapeutic approach for enterogenic diseases.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!