Activation-induced deaminase (AID) uses base deamination for class-switch recombination and somatic hypermutation and is related to the mammalian RNA-editing enzyme apolipoprotein B editing catalytic subunit 1 (APOBEC-1). CDD1 is a yeast ortholog of APOBEC-1 that exhibits cytidine deaminase and RNA-editing activity. Here, we present the crystal structure of CDD1 at 2.0-A resolution and its use in comparative modeling of APOBEC-1 and AID. The models explain dimerization and the need for trans-acting loops that contribute to active site formation. Substrate selectivity appears to be regulated by a central active site "flap" whose size and flexibility accommodate large substrates in contrast to deaminases of pyrimidine metabolism that bind only small nucleosides or free bases. Most importantly, the results suggested both AID and APOBEC-1 are equally likely to bind single-stranded DNA or RNA, which has implications for the identification of natural AID targets.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC419566 | PMC |
http://dx.doi.org/10.1073/pnas.0400493101 | DOI Listing |
J Biol Chem
December 2024
School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China. Electronic address:
Base editing is preferable for bacterial gene inactivation without generating double strand breaks, requiring homology recombination or highly efficient DNA delivery capability. However, the potential of base editing is limited by the adjoined dependence on the editing window and protospacer adjacent motif (PAM). Herein, we report an unconstrained base editing system to enable the inactivation of any genes of interest (GOIs) in bacteria.
View Article and Find Full Text PDFJ Biol Chem
December 2024
School of Forensic Medicine, Xinxiang Medical University, Xinxiang, Henan, 453003, China. Electronic address:
Metastasis is a major cause of fatality in hepatocellular carcinoma (HCC), although the precise mechanisms driving the metastatic process remain incompletely understood. In this study, we have made several important findings. Firstly, we have discovered that elevated activation-induced cytidine deaminase (AID) expression is positively correlated with Jagged 1 (JAG1) levels in clinically metastatic HCC patients.
View Article and Find Full Text PDFLymphatics
June 2024
The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY 11030, USA.
CLL B cells express elevated pro-survival BCL2, and its selective inhibitor, venetoclax, significantly reduces leukemic cell load, leading to clinical remission. Nonetheless, relapses occur. This study evaluates the hypothesis that progressively diminished BCL2 protein in cycling CLL cells within patient lymph node niches contributes to relapse.
View Article and Find Full Text PDFNeoplasia
January 2025
Center for Prevention and Therapy of Gynecological Cancers, Department of Medical Research, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan, ROC; Institute of Medical Sciences, Tzu Chi University, Hualien, Taiwan, ROC; Department of Obstetrics & Gynecology, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan, ROC. Electronic address:
Introduction: Epidemiological studies have implicated ovulation as a risk factor for ovarian high-grade serous carcinoma (HGSC) at the initiation stage. Precancerous lesions of HGSC commonly exhibit TP53 mutations attributed to DNA deamination and are frequently localized in the fallopian tube epithelium (FTE), a site regularly exposed to ovulatory follicular fluid (FF). This study aimed to assess the mutagenic potential of FF and investigate the expression levels and functional role of activation-induced cytidine deaminase (AID) following ovulation, along with the resulting TP53 DNA deamination.
View Article and Find Full Text PDFDetermining the phenotypic effects of single nucleotide variants is critical for understanding the genome and interpreting clinical sequencing results. Base editors, including diversifying base editors that create C>N mutations, are potent tools for installing point mutations in mammalian genomes and studying their effect on cellular function. Numerous base editor options are available for such studies, but little information exists on how the composition of the editor (deaminase, recruitment method, and fusion architecture) affects editing.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!