Molecular changes in neurons in multiple sclerosis: altered axonal expression of Nav1.2 and Nav1.6 sodium channels and Na+/Ca2+ exchanger.

Proc Natl Acad Sci U S A

Department of Neurology and Paralyzed Veterans of America/Eastern Paralyzed Veterans Association Neuroscience Research Center, Yale School of Medicine, New Haven, CT 06510, USA.

Published: May 2004

Although voltage-gated sodium channels are known to be deployed along experimentally demyelinated axons, the molecular identities of the sodium channels expressed along axons in human demyelinating diseases such as multiple sclerosis (MS) have not been determined. Here we demonstrate changes in the expression of sodium channels in demyelinated axons in MS, with Nav1.6 confined to nodes of Ranvier in controls but with diffuse distribution of Nav1.2 and Nav1.6 along extensive regions of demyelinated axons within acute MS plaques. Using triple-labeled fluorescent immunocytochemistry, we also show that Nav1.6, which is known to produce a persistent sodium current, and the Na+/Ca2+ exchanger, which can be driven by persistent sodium current to import damaging levels of calcium into axons, are colocalized with beta-amyloid precursor protein, a marker of axonal injury, in acute MS lesions. Our results demonstrate the molecular identities of the sodium channels expressed along demyelinated and degenerating axons in MS and suggest that coexpression of Nav1.6 and Na+/Ca2+ exchanger is associated with axonal degeneration in MS.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC419575PMC
http://dx.doi.org/10.1073/pnas.0402765101DOI Listing

Publication Analysis

Top Keywords

sodium channels
20
na+/ca2+ exchanger
12
demyelinated axons
12
multiple sclerosis
8
nav12 nav16
8
molecular identities
8
identities sodium
8
channels expressed
8
persistent sodium
8
sodium current
8

Similar Publications

MuSK regulates neuromuscular junction Nav1.4 localization and excitability.

J Neurosci

January 2025

Carney Institute for Brain Science, Brown University, Providence, RI 02912

The neuromuscular junction (NMJ) is the linchpin of nerve-evoked muscle contraction. Broadly, the function of the NMJ is to transduce nerve action potentials into muscle fiber action potentials (MFAPs). Efficient neuromuscular transmission requires both cholinergic signaling, responsible for generation of endplate potentials (EPPs), and excitation, the amplification of the EPP by postsynaptic voltage-gated sodium channels (Nav1.

View Article and Find Full Text PDF

Action potentials (spikes) are regenerated at each node of Ranvier during saltatory transmission along a myelinated axon. The high density of voltage-gated sodium channels required by nodes to reliably transmit spikes increases the risk of ectopic spike generation in the axon. Here we show that ectopic spiking is avoided because K1 channels prevent nodes from responding to slow depolarization; instead, axons respond selectively to rapid depolarization because K1 channels implement a high-pass filter.

View Article and Find Full Text PDF

Objective: Bakery products are considered as one of main dietary sources of sodium/salt in Slovenia. Our main objective was to assess the salt content in bread in Slovenia, focusing into different bread categories and sales channels. The data collected in 2022 was compared with year 2012.

View Article and Find Full Text PDF

The Varroa destructor (hereafter referred to as Varroa) is a major pest of honeybees that is generally controlled using pyrethroid-based acaricides. However, resistance to these insecticides has become a growing problem, driven by the acquisition of knockdown resistance (kdr) mutations in the mite's voltage-gated sodium channel (vgsc) gene. Resistance mutations in the vgsc gene, such as the L925V mutation, can confer resistance to pyrethroids like flumethrin and tau-fluvalinate.

View Article and Find Full Text PDF

Vanadium-based Na superionic conductor (NASICON) type materials (NaVM(PO), M = transition metals) have attracted extensive attention when used as sodium-ion batteries (SIBs) cathodes due to their stable structures and large Na diffusion channels. However, the materials have poor electrical conductivity and mediocre energy density, which hinder their practical applications. Activating the V/V redox couple (V/V≈4.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!