Objective: To assess the effects of the side of implantation (first-side vs second-side vestibular schwannoma); the presence of nonauditory sensations; the general health, expectations, and motivation of the patients; and a support group on the use of a multichannel auditory brainstem implant (ABI) in 12- to 18-year-old patients with neurofibromatosis 2.
Design: Since 1992, 21 individuals (age range, 12-18 years) who were deafened by neurofibromatosis 2 have undergone implantation with a multichannel ABI at the House Ear Institute, Los Angeles, Calif. The patients were categorized regarding side of implantation, presence of remaining hearing (in first-side implant recipients), incidence of nonauditory sensations, and ABI use or nonuse. They were also rated on factors of general health, personal motivation, expectations, and family support.
Results: Nineteen (95%) of 20 teenagers tested received hearing sensations from their ABIs. Eleven teenagers used their ABIs regularly, but 8 did not. Of the nonusers, 2 had good remaining hearing on the side with the second vestibular schwannoma, 2 had persistent nonauditory sensations, and 4 became program dropouts. None of the dropouts had remaining hearing, significant nonauditory sensations, or poor health; however, they generally rated poorly in terms of personal motivation, expectations, and family support. One patient with good family support returned with excellent ABI results after 4 years' absence.
Conclusions: The multichannel ABI is an effective means of providing hearing sensations to young patients deafened by neurofibromatosis 2. Preoperative counseling regarding the importance of such factors as expectations, personal motivation, and family support is invaluable and can promote successful adaptation to the device. With patience and support, even young nonusers (including program dropouts) can become successful device users.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1001/archotol.130.5.656 | DOI Listing |
Ear Hear
December 2024
Faculty of Psychology and Neuroscience, Department of Cognitive Neuroscience, Maastricht University, Maastricht, the Netherlands.
Objectives: Identifying target sounds in challenging environments is crucial for daily experiences. It is important to note that it can be enhanced by nonauditory stimuli, for example, through lip-reading in an ongoing conversation. However, how tactile stimuli affect auditory processing is still relatively unclear.
View Article and Find Full Text PDFCureus
September 2024
Otolaryngology and Head and Neck Surgery, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research (Deemed to Be University), Wardha, IND.
Brain Stimul
November 2023
Department of Bioengineering, Stanford University, Stanford, CA, 94305, USA; Department of Electrical Engineering, Stanford University, Stanford, CA, 94305, USA; Department of Radiology, Stanford School of Medicine, Stanford, CA, 94305, USA. Electronic address:
Background: Transcranial ultrasound stimulation (TUS) is a promising noninvasive neuromodulation modality. The inadvertent and unpredictable activation of the auditory system in response to TUS obfuscates the interpretation of non-auditory neuromodulatory responses.
Objective: The objective was to develop and validate a computational metric to quantify the susceptibility to unintended auditory brainstem response (ABR) in mice premised on time frequency analyses of TUS signals and auditory sensitivity.
J Acoust Soc Am
May 2023
Audio Communication Group, Technische Universität Berlin, Einsteinufer 17c, Berlin, 10587, Germany.
This study investigates loudness perception in real-world contexts using predictors related to the sound, situation, or person. In the study, 105 participants recorded 6594 sound environments in their homes, which were then evaluated based on the Experience Sampling Method. Hierarchical linear regressions using a loudness level based on ISO 532-1 allowed for obtaining the best model fits for predicting perceived loudness and explaining the highest variance.
View Article and Find Full Text PDFLaryngorhinootologie
May 2023
Institut für AudioNeuroTechnologie (VIANNA) & Abt. für experimentelle Otologie, Exzellenzcluster Hearing4All, Medizinische Hochschule Hannover (Abteilungsleiter und Institutsleiter: Prof. Dr. A. Kral) & Australian Hearing Hub, School of Medicine and Health Sciences, Macquarie University, Sydney, Australia.
The human brain shows extensive development of the cerebral cortex after birth. This is extensively altered by the absence of auditory input: the development of cortical synapses in the auditory system is delayed and their degradation is increased. Recent work shows that the synapses responsible for corticocortical processing of stimuli and their embedding into multisensory interactions and cognition are particularly affected.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!