Background: Involvement of the peripheral nervous system in the pathogenesis of prion diseases is becoming increasingly evident. However, pathologic protease-resistant prion protein deposition in the peripheral nerves of patients with Creutzfeldt-Jakob disease has never been demonstrated, to our knowledge.

Objective: To determine whether mutated prion protein accumulation could be shown in the peripheral nervous system of patients with sporadic Creutzfeldt-Jakob disease.

Design: Autopsy study.

Patients: Three patients with sporadic Creutzfeldt-Jakob disease.

Interventions: Study of the brain, spinal cord, and sciatic and superficial peroneal nerves by immunohistochemistry and Western blot analysis.

Main Outcome Measure: Demonstration of protease-resistant prion protein accumulation.

Results: In all cases, protease-resistant prion protein accumulation was found in the brain and posterior horns of the spinal cord. In 1 case, protease-resistant prion protein deposits were also evidenced in the dorsal root ganglia and the superficial peroneal nerve.

Conclusions: Protease-resistant prion protein may be found in the peripheral nervous system of some patients with sporadic Creutzfeldt-Jakob disease. However, a larger series is required to assess the incidence of peripheral nervous system involvement and to discuss the diagnostic usefulness of peripheral nerve biopsy in sporadic Creutzfeldt-Jakob disease.

Download full-text PDF

Source
http://dx.doi.org/10.1001/archneur.61.5.747DOI Listing

Publication Analysis

Top Keywords

prion protein
28
peripheral nervous
20
nervous system
20
sporadic creutzfeldt-jakob
20
protease-resistant prion
20
creutzfeldt-jakob disease
16
patients sporadic
12
protein accumulation
8
system patients
8
spinal cord
8

Similar Publications

Background: In tauopathies, the protein tau misfolds into a b-sheet conformation that self-templates and spreads throughout the brain causing progressive degeneration. Biological and structural data have shown that the shape, or strain, that tau adopts when it misfolds determines which disease a patient will develop. We previously used HEK293T cells expressing TauRD-YFP to show that tau strain formation is isoform-specific.

View Article and Find Full Text PDF

Basic Science and Pathogenesis.

Alzheimers Dement

December 2024

Peking University, Beijing, Beijing, China.

Background: Prion diseases are a group of neurodegenerative diseases associated with prion protein. The disease can be caused by mutations in the PRNP gene, the gene that encodes prion protein. An octapeptide repeat on the N-terminus of prion protein plays an important role in normal intercellular function of prion protein.

View Article and Find Full Text PDF

Basic Science and Pathogenesis.

Alzheimers Dement

December 2024

Ecole polytechnique - CNRS UMR7654, Palaiseau, Ile-de-France, France; Université Paris Cité - Inserm UMR-S1124, Paris, Ile-de-France, France.

Alzheimer's disease (AD) is the most common dementia in humans that today concerns 50 million individuals worldwide and will affect more than 100 million people in 2050. Except for familial AD cases (<5% of AD patients) for which AD pathology connects to mutations in critical genes involved in the processing of the amyloid precursor protein into neurotoxic Aß peptides, it remains unknown what provokes the overproduction and deposition of Aß peptides in the brain of sporadic AD cases (>95% of AD patients). Some nanosized materials, e.

View Article and Find Full Text PDF

Background: Tauopathies, including Alzheimer's Disease and Frontotemporal Dementia, are characterized as intracellular lesions composed of aggregated tau proteins. Soluble tau oligomers are shown to be one of the most toxic species and are responsible for the spread of tau pathology. Recent studies have found that several proteins such as amyloid b, a-synuclein, and TDP-43 can aggregate tau.

View Article and Find Full Text PDF

Background: Alzheimer's Disease (AD) is a neurodegenerative proteinopathy in which Aβ can misfold and aggregate into seeds that structurally corrupt native proteins, mimicking a prion-like process. These amyloid aggregation and propagation processes are influenced by three factors: the origin of the Aβ seed, time of incubation and host. However, the mechanism underlying the differential effect of each factor is poorly known.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!