The Eph family of receptors, with 14 members in humans, makes up the largest group of receptor tyrosine kinases. These Eph receptors, along with their ligands, the 8 members of the ephrin family of ligands are involved in diverse developmental functions, including hindbrain development in vertebrates, tissue patterning, and angiogenesis. These Eph receptors and ephrin ligands have also been identified as important regulators in the development and progression of cancer. We have presented here a systematic and comprehensive investigation of the Eph/ephrin expression profiles of MCF-10A, MCF-7, and MDA-MB-231 cells representing normal breast, non-invasive breast tumor, and invasive tumor, respectively, based on their characteristic phenotypes in Matrigel matrix. The data have allowed us to correlate the gene expression profile with the cell phenotype that has potential application in tumor diagnostics. We demonstrate here that upregulation of EphA2, A7, A10, and ephrinA2 and B3 is likely involved in tumorigenesis and/or invasiveness, while downregulation of EphA1, A3, A4, A8, B3, B4, B6, and ephrinA1 and B1 may be particularly important in invasiveness. Based on these results we discuss the role of EphA2 and ephrinA1 combination in malignancy. The data have provided clues as to the importance of these molecules in the progression of breast cancer and specifically identified EphB6, a kinase-deficient receptor, which is downregulated in the most aggressive cell line, as reported for several other cancer types including neuroblastoma and melanoma suggesting its potential as a prognostic indicator in breast cancer as well.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.bbrc.2004.04.102 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!