Motivation: Despite many successes of conventional DNA sequencing methods, some DNAs remain difficult or impossible to sequence. Unsequenceable regions occur in the genomes of many biologically important organisms, including the human genome. Such regions range in length from tens to millions of bases, and may contain valuable information such as the sequences of important genes. The authors have recently developed a technique that renders a wide range of problematic DNAs amenable to sequencing. The technique is known as sequence analysis via mutagenesis (SAM). This paper presents a number of algorithms for analysing and interpreting data generated by this technique.

Results: The essential idea of SAM is to infer the target sequence using the sequences of mutants derived from the target. We describe three algorithms used in this process. The first algorithm predicts the number of mutants that will be required to infer the target sequence with a desired level of accuracy. The second algorithm infers the target sequence itself, using the mutant sequences. The third algorithm assigns quality values to each inferred base. The algorithms are illustrated using mutant sequences generated in the laboratory.

Download full-text PDF

Source
http://dx.doi.org/10.1093/bioinformatics/bth258DOI Listing

Publication Analysis

Top Keywords

target sequence
12
sequence analysis
8
analysis mutagenesis
8
infer target
8
mutant sequences
8
sequence
5
algorithms
4
algorithms sequence
4
mutagenesis motivation
4
motivation despite
4

Similar Publications

Gastric cancer is an aggressive malignancy characterized by significant clinical heterogeneity arising from complex genetic and environmental interactions. This study employed single-cell RNA sequencing, using the 10 × Genomics platform, to analyze 262,532 cells from gastric cancer samples, identifying 32 distinct clusters and 10 major cell types, including immune cells (e.g.

View Article and Find Full Text PDF

The underlying mechanisms of the association of bone health with depression - an experimental study.

Mol Biol Rep

January 2025

Medical Sociology and Psychobiology, Department of Health and Physical Activity, University of Potsdam, 14469, Potsdam, Germany.

Background: Depression constitutes a risk factor for osteoporosis, but underlying molecular and cellular mechanisms are not fully understood. MiRNAs influence gene expression and are carried by extracellular vesicles (EV), affecting cell-cell communication.

Aims: (1) Identify the difference in miRNA expression between depressed patients and healthy controls; (2) Analyze associations of these miRNAs with bone turnover markers; (3) Analyze target genes of differentially regulated miRNAs and predict associated pathways regarding depression and bone metabolism.

View Article and Find Full Text PDF

Malignant neoplasms arise within a region of chronic inflammation caused by tissue injuries. Inflammation is a key factor involved in all aspects of tumorigenesis including initiation, proliferation, invasion, angiogenesis, and metastasis. Interleukin-1 (IL-1) plays critical functions in tumor development with influencing the tumor microenvironment and promoting cancer progression.

View Article and Find Full Text PDF

In Guangxi, the number of newly diagnosed HIV-1 infections among students is continuously increasing, highlighting the need for a detailed understanding of local transmission dynamics, particularly focusing on key drivers of transmission. We recruited individuals newly diagnosed with HIV-1 in Nanning, Guangxi, and amplified and sequenced the HIV-1 pol gene to construct a molecular network. Bayesian phylogenetic analysis was utilized to identify migration events, and multivariable logistic regression was employed to analyze factors influencing clustering and high linkage.

View Article and Find Full Text PDF

CircPRKD3-loaded exosomes concomitantly elicit tumor growth inhibition and glioblastoma microenvironment remodeling via inhibiting STAT3 signaling.

Neuro Oncol

January 2025

Department of Neurosurgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, P.R. China.

Background: Glioblastoma stem cells (GSCs) and their exosomes (exos) are involved in shaping the immune microenvironment, which is important for tumor invasion and recurrence. However, studies involving GSC-derived exosomal circular RNAs (GDE-circRNAs) in regulating tumor microenvironment (TME) remain unknown. Here, we comprehensively evaluated the significance of a novel immune-related GDE-circRNA in glioma microenvironment.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!