Several lines of evidence support the hypothesis that ATP-sensitive K+ channels (K+(ATP)) participate in the brain's regulation of peripheral glucose homeostasis. In testing this hypothesis we conducted a series of in vivo experiments using albino rats and bilateral intrahypothalamic injections of K+(ATP) channel blockers, glibenclamide and repaglinide. The results show that 0.2 and 2.0 nM injections of glibenclamide lowered blood glucose in a dose-dependent manner. During mild insulin-induced hypoglycemia, hypothalamic glibenclamide delayed recovery to normoglycemia. The impaired recovery was associated with a reduction in plasma norepinephrine (P<0.001), though circulating epinephrine and glucagon were not reduced. In a separate experiment, 2-deoxy-D-glucose (200 mg/kg) was intraperitoneally administered to produce neuroglucopenia. Hypothalamic injections of either glibenclamide or repaglinide significantly blunted compensatory hyperglycemic responses (P<0.01). In a feeding study, 2.0, but not 0.2 nM of hypothalamic glibenclamide, reduced chow intake over a 2-h period (P<0.01). The results support the hypothesis that hypothalamic K+(ATP) channels participate in central glucose-sensing and glucose regulation.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ejphar.2004.03.040DOI Listing

Publication Analysis

Top Keywords

glucose homeostasis
8
evidence hypothalamic
4
hypothalamic k+atp
4
k+atp channels
4
channels modulation
4
modulation glucose
4
homeostasis lines
4
lines evidence
4
evidence support
4
support hypothesis
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!