Presynaptic AMPA receptors: more than just ion channels?

Biol Cell

Department of Medical Pharmacology, CNR Institute of Neuroscience, Cellular and Molecular Pharmacology, Center of Excellence for Neurodegenerative Diseases, 20129 Milano, Italy.

Published: May 2004

AMPA receptor ion channels are of paramount importance for postsynaptic excitation. Several reports demonstrate that AMPA receptors are present in the presynaptic compartment and point to a role of these receptors in the modulation of presynaptic function. We discuss here the possibility that not only ion influx through the receptor, but also biochemical cascades, activated by ligand binding and independent from ion flux, might contribute to AMPA mediated presynaptic modulation.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.biolcel.2004.01.008DOI Listing

Publication Analysis

Top Keywords

ampa receptors
8
presynaptic
4
presynaptic ampa
4
ion
4
receptors ion
4
ion channels?
4
channels? ampa
4
ampa receptor
4
receptor ion
4
ion channels
4

Similar Publications

Emotional stress increases GluA2 expression and potentiates fear memory via adenylyl cyclase 5.

Cell Rep

January 2025

Department of Cell Biology and Anatomy, LSUHSC, New Orleans, LA 70112, USA; Southeast Louisiana VA Healthcare System, New Orleans, LA 70119, USA. Electronic address:

Stress can alter behavior and contributes to psychiatric disorders by regulating the expression of the GluA2 AMPA receptor subunit. We have previously shown in mice that exposure to predator odor stress elevates GluA2 transcription in cerebellar molecular layer interneurons (MLIs), and MLI activity is required for fear memory consolidation. Here, we identified the critical involvement of adenylyl cyclase 5, in both the stress-induced increase in GluA2 in MLIs and the enhancement of fear memory.

View Article and Find Full Text PDF

The detrimental effects of oligomeric amyloid-β (Aβ) on synapses are considered the leading cause for cognitive deficits in Alzheimer's disease. However, through which mechanism Aβ oligomers impair synaptic structure and function remains unknown. Here, we used electrophysiology and AMPA-receptor (AMPAR) imaging on mice and rat neurons to demonstrate that GluA3 expression in neurons lacking GluA3 is sufficient to re-sensitize their synapses to the damaging effects of Aβ, indicating that GluA3-containing AMPARs at synapses are necessary and sufficient for Aβ to induce synaptic deficits.

View Article and Find Full Text PDF

Uncompetitive NMDAR (N-methyl-D-aspartate receptor) antagonists restore impaired neural plasticity, reverse depressive-like behavior in animal models, and relieve major depressive disorder (MDD) in humans. This review integrates recent findings from in silico, in vitro, in vivo, and human studies of uncompetitive NMDAR antagonists into the extensive body of knowledge on NMDARs and neural plasticity. Uncompetitive NMDAR antagonists are activity-dependent channel blockers that preferentially target hyperactive GluN2D subtypes because these subtypes are most sensitive to activation by low concentrations of extracellular glutamate and are more likely activated by certain pathological agonists and allosteric modulators.

View Article and Find Full Text PDF

The transmembrane protein Synapse Differentiation Induced Gene 4 (SynDIG4) functions as an auxiliary factor of AMPA receptors (AMPARs) and plays a critical role in excitatory synapse plasticity as well as hippocampal-dependent learning and memory. Mice lacking SynDIG4 have reduced surface expression of GluA1 and GluA2 and are impaired in single tetanus-induced long-term potentiation and NMDA receptor (NMDAR)-dependent long-term depression. These findings suggest that SynDIG4 may play an important role in regulating AMPAR distribution through intracellular trafficking mechanisms; however, the precise roles by which SynDIG4 governs AMPAR distribution remain unclear.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!